精英家教网 > 高中数学 > 题目详情
设0≤x≤2,求当x为何值时,函数y=4x-
12
-2x+1+5
取最大值,并求出最大值.
分析:通过x的范围,求出2x的范围,化简函数的表达式,配方后求解最大值.
解答:解:∵0≤x≤2,∴1≤2x≤4,
函数y=4x-
1
2
-2x+1+5

=
1
2
(2x)2-2•2x+5

=
1
2
(2x-2)2+3
,1≤2x≤4,
所以当2x=2,即x=1时,函数有最小值:3.
当2x=4,即x=2时,函数有最大值:5.
∴x=2时函数的最小值为:5.
点评:本题考查二次函数的最大值的求法,配方法的应用,基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系中,已知O为坐标原点,点A的坐标为(a,b),点B的坐标为(cosωx,sinωx),其中a2+b2≠0且ω>0.设f(x)=
OA
OB

(1)若a=
3
,b=1,ω=2,求方程f(x)=1在区间[0,2π]内的解集;
(2)若点A是过点(-1,1)且法向量为
n
=(-1,1)
的直线l上的动点.当x∈R时,设函数f(x)的值域为集合M,不等式x2+mx<0的解集为集合P.若P⊆M恒成立,求实数m的最大值;
(3)根据本题条件我们可以知道,函数f(x)的性质取决于变量a、b和ω的值.当x∈R时,试写出一个条件,使得函数f(x)满足“图象关于点(
π
3
,0)
对称,且在x=
π
6
处f(x)取得最小值”.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图3,点A是曲线y=3-x2(y>0)上的一个动点(点A在y轴左侧)以点A为顶点作矩形ABCD,使点B在此曲线上,D,C在x轴上,设|OC|=x,矩形ABCD的面积为S(x).
(1)写出函数S(x)的解析式,并求出函数的定义域
(2)求当x为何值时,矩形ABCD的面积最大?并求出最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图3,点A是曲线y=3-x2(y>0)上的一个动点(点A在y轴左侧)以点A为顶点作矩形ABCD,使点B在此曲线上,D,C在x轴上,设|OC|=x,矩形ABCD的面积为S(x).
(1)写出函数S(x)的解析式,并求出函数的定义域
(2)求当x为何值时,矩形ABCD的面积最大?并求出最大面积.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年北京市海淀区高二(下)期中数学试卷(解析版) 题型:解答题

如图3,点A是曲线y=3-x2(y>0)上的一个动点(点A在y轴左侧)以点A为顶点作矩形ABCD,使点B在此曲线上,D,C在x轴上,设|OC|=x,矩形ABCD的面积为S(x).
(1)写出函数S(x)的解析式,并求出函数的定义域
(2)求当x为何值时,矩形ABCD的面积最大?并求出最大面积.

查看答案和解析>>

同步练习册答案