ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬ÒÑÖªOΪ×ø±êÔ­µã£¬µãAµÄ×ø±êΪ£¨a£¬b£©£¬µãBµÄ×ø±êΪ£¨cos¦Øx£¬sin¦Øx£©£¬ÆäÖÐa2+b2¡Ù0ÇҦأ¾0£®Éèf(x)=
OA
OB
£®
£¨1£©Èôa=
3
£¬b=1£¬¦Ø=2£¬Çó·½³Ìf£¨x£©=1ÔÚÇø¼ä[0£¬2¦Ð]ÄڵĽ⼯£»
£¨2£©ÈôµãAÊǹýµã£¨-1£¬1£©ÇÒ·¨ÏòÁ¿Îª
n
=(-1£¬1)
µÄÖ±ÏßlÉϵĶ¯µã£®µ±x¡ÊRʱ£¬É躯Êýf£¨x£©µÄÖµÓòΪ¼¯ºÏM£¬²»µÈʽx2+mx£¼0µÄ½â¼¯Îª¼¯ºÏP£®ÈôP⊆Mºã³ÉÁ¢£¬ÇóʵÊýmµÄ×î´óÖµ£»
£¨3£©¸ù¾Ý±¾ÌâÌõ¼þÎÒÃÇ¿ÉÒÔÖªµÀ£¬º¯Êýf£¨x£©µÄÐÔÖÊÈ¡¾öÓÚ±äÁ¿a¡¢bºÍ¦ØµÄÖµ£®µ±x¡ÊRʱ£¬ÊÔд³öÒ»¸öÌõ¼þ£¬Ê¹µÃº¯Êýf£¨x£©Âú×㡰ͼÏó¹ØÓÚµã(
¦Ð
3
£¬0)
¶Ô³Æ£¬ÇÒÔÚx=
¦Ð
6
´¦f£¨x£©È¡µÃ×îСֵ¡±£®
·ÖÎö£º£¨1£©¸ù¾ÝÏòÁ¿ÊýÁ¿»ýµÄ¶¨Òå±íʾ³öº¯Êýf£¨x£©µÄ½âÎöʽ½«a=
3
£¬b=1£¬¦Ø=2´úÈëºó»¯¼ò£¬ÔÙÁîf£¨x£©=1½â³öxµÄÖµ¼´¿É£®
£¨2£©ÏÈд³öÖ±ÏßlµÄ·½³Ì£¬µÃµ½aÓëbµÄ¹Øϵ´úÈëf£¨x£©Çó³öº¯Êýf£¨x£©µÄÖµÓòM£¬½â³ö¼¯ºÏPºóÁîP⊆Mºã³ÉÁ¢¼´¿É£®
£¨3£©¸ù¾ÝÈý½Çº¯ÊýµÄ¶Ô³ÆÐÔ¶Ôb·Ö´óÓÚ0ºÍСÓÚ0Á½ÖÖÇé¿ö½øÐзÖÎö£®
½â´ð£º½â£º£¨1£©ÓÉÌâÒâf(x)=
OA
OB
=bsin¦Øx+acos¦Øx
£¬
µ±a=
3
£¬b=1£¬¦Ø=2ʱ£¬f(x)=sin2x+
3
cos2x=2sin(2x+
¦Ð
3
)=1
£¬?sin(2x+
¦Ð
3
)=
1
2
£¬
ÔòÓÐ2x+
¦Ð
3
=2k¦Ð+
¦Ð
6
»ò2x+
¦Ð
3
=2k¦Ð+
5¦Ð
6
£¬k¡ÊZ£®
¼´x=k¦Ð-
¦Ð
12
»òx=k¦Ð+
¦Ð
4
£¬k¡ÊZ£®
ÓÖÒòΪx¡Ê[0£¬2¦Ð]£¬¹Êf£¨x£©=1ÔÚ[0£¬2¦Ð]ÄڵĽ⼯Ϊ{
¦Ð
4
£¬
11¦Ð
12
£¬
5¦Ð
4
£¬
23¦Ð
12
}
£®
£¨2£©ÓÉÌâÒ⣬lµÄ·½³ÌΪ-£¨x+1£©+£¨y-1£©=0?y=x+2£®AÔÚ¸ÃÖ±ÏßÉÏ£¬¹Êb=a+2£®
Òò´Ë£¬f(x)=(a+2)sin¦Øx+acos¦Øx=
(a+2)2+a2
sin(¦Øx+¦Õ)
£¬
ËùÒÔ£¬f£¨x£©µÄÖµÓòM=[-
(a+2)2+a2
£¬
(a+2)2+a2
]
£®
ÓÖx2+mx=0µÄ½âΪ0ºÍ-m£¬¹ÊҪʹP⊆Mºã³ÉÁ¢£¬
Ö»Ðè-m¡Ê[-
(a+2)2+a2
£¬
(a+2)2+a2
]
£¬¶ø
(a+2)2+a2
=
2(a+1)2+2
¡Ý
2

¼´-
2
¡Üm¡Ü
2
£¬ËùÒÔmµÄ×î´óÖµ
2
£®
£¨3£©ÒòΪf(x)=
OA
OB
=bsin¦Øx+acos¦Øx=
a2+b2
sin(¦Øx+¦Õ)
£¬
ÉèÖÜÆÚT=
2¦Ð
¦Ø
£®
ÓÉÓÚº¯Êýf£¨x£©ÐëÂú×㡰ͼÏó¹ØÓÚµã(
¦Ð
3
£¬0)
¶Ô³Æ£¬
ÇÒÔÚx=
¦Ð
6
´¦f£¨x£©È¡µÃ×îСֵ¡±£®
Òò´Ë£¬¸ù¾ÝÈý½Çº¯ÊýµÄͼÏóÌØÕ÷¿ÉÖª£¬
¦Ð
3
-
¦Ð
6
=
T
4
+
n
2
•T?
¦Ð
6
=
2¦Ð
¦Ø
(
2n+1
4
)
?¦Ø=6n+3£¬n¡ÊN£®
ÓÖÒòΪ£¬ÐÎÈçf(x)=
a2+b2
sin(¦Øx+¦Õ)
µÄº¯ÊýµÄͼÏóµÄ¶Ô³ÆÖÐÐĶ¼ÊÇf£¨x£©µÄÁãµã£¬¹ÊÐèÂú×ãsin(
¦Ð
3
¦Ø+¦Õ)=0
£¬
¶øµ±¦Ø=6n+3£¬n¡ÊNʱ£¬
ÒòΪ
¦Ð
3
(6n+3)+¦Õ=2n¦Ð+¦Ð+¦Õ
£¬n¡ÊN£»
ËùÒÔµ±ÇÒ½öµ±¦Õ=k¦Ð£¬k¡ÊZʱ£¬f£¨x£©µÄͼÏó¹ØÓÚµã(
¦Ð
3
£¬0)
¶Ô³Æ£»
´Ëʱ£¬
sin¦Õ=
a
a2+b2
=0
cos¦Õ=
b
a2+b2
=¡À1
?a=0£¬
b
|b|
=¡À1
£®
£¨i£©µ±b£¾0£¬a=0ʱ£¬f£¨x£©=sin¦Øx£¬½øÒ»²½ÒªÊ¹x=
¦Ð
6
´¦f£¨x£©È¡µÃ×îСֵ£¬
ÔòÓÐf(
¦Ð
6
)=sin(
¦Ð
6
•¦Ø)=-1
?
¦Ð
6
•¦Ø=2k¦Ð-
¦Ð
2
?¦Ø=12k-3
£¬k¡ÊZ£»
Ó֦أ¾0£¬ÔòÓЦØ=12k-3£¬k¡ÊN*£»Òò´Ë£¬ÓÉ
¦Ø=6n+3£¬n¡ÊN¡Á
¦Ø=12k-3£¬n¡ÊN*
¿ÉµÃ¦Ø=12m+9£¬m¡ÊN£»
£¨ii£©µ±b£¼0£¬a=0ʱ£¬f£¨x£©=-sin¦Øx£¬½øÒ»²½ÒªÊ¹x=
¦Ð
6
´¦f£¨x£©È¡µÃ×îСֵ£¬
ÔòÓÐf(
¦Ð
6
)=-sin(
¦Ð
6
•¦Ø)=-1
?
¦Ð
6
•¦Ø=2k¦Ð+
¦Ð
2
?¦Ø=12k+3
£¬k¡ÊZ£»
Ó֦أ¾0£¬ÔòÓЦØ=12k+3£¬k¡ÊN£»Òò´Ë£¬ÓÉ
¦Ø=6n+3£¬n¡ÊN¡Á
¦Ø=12k-3£¬n¡ÊN*
¿ÉµÃ¦Ø=12m+3£¬m¡ÊN£»
×ÛÉÏ£¬Ê¹µÃº¯Êýf£¨x£©Âú×㡰ͼÏó¹ØÓÚµã(
¦Ð
3
£¬0)
¶Ô³Æ£¬
ÇÒÔÚx=
¦Ð
6
´¦f£¨x£©È¡µÃ×îСֵ¡±µÄ³äÒªÌõ¼þÊÇ£º
¡°µ±b£¾0£¬a=0ʱ£¬¦Ø=12m+9£¨m¡ÊN£©»òµ±b£¼0£¬a=0ʱ£¬¦Ø=12m+3£¨m¡ÊN£©¡±£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÏòÁ¿µÄÊýÁ¿»ýÔËËãºÍÈý½Çº¯ÊýµÄÁ½½ÇºÍÓë²îµÄÕýÏÒ¹«Ê½µÄÓ¦Óã®ÊôÄÑÌ⣮ƽʱҪעÒâ»ù´¡ÖªÊ¶µÄÕÆÎÕÓöµ½ÄÑÌâʱ·½ÄÜÓ­Èжø½â£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÔOΪ¼«µã£¬xÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ£ºpcos(¦È-
¦Ð3
)=1
£¬M£¬N·Ö±ðΪÇúÏßCÓëxÖᣬyÖáµÄ½»µã£¬ÔòMNµÄÖеãPÔÚƽÃæÖ±½Ç×ø±êϵÖеÄ×ø±êΪ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬A£¨3£¬0£©¡¢B£¨0£¬3£©¡¢C£¨cos¦È£¬sin¦È£©£¬¦È¡Ê(
¦Ð
2
£¬
3¦Ð
2
)
£¬ÇÒ|
AC
|=|
BC
|
£®
£¨1£©Çó½Ç¦ÈµÄÖµ£»
£¨2£©Éè¦Á£¾0£¬0£¼¦Â£¼
¦Ð
2
£¬ÇÒ¦Á+¦Â=
2
3
¦È
£¬Çóy=2-sin2¦Á-cos2¦ÂµÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬Èç¹ûxÓëy¶¼ÊÇÕûÊý£¬¾Í³Æµã£¨x£¬y£©ÎªÕûµã£¬ÏÂÁÐÃüÌâÖÐÕýÈ·µÄÊÇ
 
£¨Ð´³öËùÓÐÕýÈ·ÃüÌâµÄ±àºÅ£©£®
¢Ù´æÔÚÕâÑùµÄÖ±Ïߣ¬¼È²»Óë×ø±êÖáƽÐÐÓÖ²»¾­¹ýÈκÎÕûµã
¢ÚÈç¹ûkÓëb¶¼ÊÇÎÞÀíÊý£¬ÔòÖ±Ïßy=kx+b²»¾­¹ýÈκÎÕûµã
¢ÛÖ±Ïßl¾­¹ýÎÞÇî¶à¸öÕûµã£¬µ±ÇÒ½öµ±l¾­¹ýÁ½¸ö²»Í¬µÄÕûµã
¢ÜÖ±Ïßy=kx+b¾­¹ýÎÞÇî¶à¸öÕûµãµÄ³ä·Ö±ØÒªÌõ¼þÊÇ£ºkÓëb¶¼ÊÇÓÐÀíÊý
¢Ý´æÔÚÇ¡¾­¹ýÒ»¸öÕûµãµÄÖ±Ïߣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬ÏÂÁк¯ÊýͼÏó¹ØÓÚÔ­µã¶Ô³ÆµÄÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬ÒԵ㣨1£¬0£©ÎªÔ²ÐÄ£¬rΪ°ë¾¶×÷Ô²£¬ÒÀ´ÎÓëÅ×ÎïÏßy2=x½»ÓÚA¡¢B¡¢C¡¢DËĵ㣬ÈôACÓëBDµÄ½»µãFÇ¡ºÃΪÅ×ÎïÏߵĽ¹µã£¬Ôòr=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸