【题目】若圆
上有四个不同的点到直线
的距离为2,则
的取值范围是( )
A. (-12,8) B. (-8,12) C. (-13,17) D. (-17,13)
科目:高中数学 来源: 题型:
【题目】
有甲、乙、丙、丁四名网球运动员,通过对过去战绩的统计,在一场比赛中,甲对乙、丙、丁取胜的概率分别为
.
(Ⅰ)若甲和乙之间进行三场比赛,求甲恰好胜两场的概率;
(Ⅱ)若四名运动员每两人之间进行一场比赛,设甲获胜场次为
,求随机变量
的分布列及期望
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
(
)的离心率为
,
分别是它的左、右焦点,且存在直线
,使
关于
的对称点恰好是圆
(
)的一条直线的两个端点.
(1)求椭圆
的方程;
(2)设直线
与抛物线
(
)相交于
两点,射线
,
与椭圆
分别相交于点
,试探究:是否存在数集
,当且仅当
时,总存在
,使点
在以线段
为直径的圆内?若存在,求出数集
;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知过原点的动直线
与圆
相交于不同的两点
.
(1)求线段
的中点
的轨迹
的方程;
(2)是否存在实数
,使得直线
与曲线
只有一个交点?若存在,求出
的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知OPQ是半径为1,圆心角为θ的扇形,A是扇形弧PQ上的动点,AB∥OQ,OP与AB交于点B,AC∥OP,OQ与AC交于点C.
![]()
(1)当θ=
时,求点A的位置,使矩形ABOC的面积最大,并求出这个最大面积;
(2)当θ=
时,求点A的位置,使平行四边形ABOC的面积最大,并求出这个最大面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某保险公司有一款保险产品的历史收益率(收益率=利润÷保费收入)的频率分布直方图如图所示:
![]()
(Ⅰ)试估计平均收益率;
(Ⅱ)根据经验,若每份保单的保费在20元的基础上每增加
元,对应的销量
(万份)与
(元)有较强线性相关关系,从历史销售记录中抽样得到如下5组
与
的对应数据:
![]()
据此计算出的回归方程为
.
(i)求参数
的估计值;
(ii)若把回归方程
当作
与
的线性关系,用(Ⅰ)中求出的平均收益率估计此产品的收益率,每份保单的保费定为多少元时此产品可获得最大收益,并求出该最大收益.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】国际奥委会将于2017年9月15日在秘鲁利马召开130次会议决定2024年第33届奥运会举办地。目前德国汉堡、美国波士顿等申办城市因市民担心赛事费用超支而相继退出。某机构为调查我国公民对申办奥运会的态度,选了某小区的100位居民调查结果统计如下:
![]()
(1)根据已有数据,把表格数据填写完整;
(2)能否在犯错误的概率不超过5%的前提下认为不同年龄与支持申办奥运无关?
(3)已知在被调查的年龄大于50岁的支持者中有5名女性,其中2位是女教师,现从这5名女性中随机抽取3人,求至多有1位教师的概率.
附:
,
.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列{an}中,a1=
,前n项和Sn满足Sn+1-Sn=(
)n+1(n∈N*).
(1)求数列{an}的通项公式an以及前n项和Sn;
(2)若S1,t(S1+S2),3(S2+S3)成等差数列,求实数t的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com