精英家教网 > 高中数学 > 题目详情

“中国式过马路”存在很大的交通安全隐患.某调查机构为了解路人对“中国式过马路 ”的态度是否与性别有关,从马路旁随机抽取30名路人进行了问卷调查,得到了如下列联表:

 
男性
女性
合计
反感
10

 
不反感

8
 
合计
 
 
30
已知在这30人中随机抽取1人抽到反感“中国式过马路 ”的路人的概率是.
(Ⅰ)请将上面的2×2列联表补充完整(在答题卡上直接填写结果,不需要写求解过程),并据此资料分析反感“中国式过马路 ”与性别是否有关?
(Ⅱ)若从这30人中的女性路人中随机抽取2人参加一活动,记反感“中国式过马路”的人数为X,求X的分布列和数学期望.
参考数据和公式:
2×2列联表公式:的临界值表:

0.50
0.40
0.25
0.15
0.10
0.05
0.025
0.010
0.005
0.001

0.455
0.708
1.323
2.072
2.706
3.841
5.024
6.635
7.879
10.828

(Ⅰ)没有充足的理由认为反感“中国式过马路”与性别有关.
(Ⅱ)的分布列为:


0
1
2




的数学期望为: 

解析试题分析:(Ⅰ)

 
男性
女性
合计
反感
10
6
16
不反感
6
8
14
合计
16
14
30
     3分
:反感“中国式过马路 ”与性别与否无关
由已知数据得:
所以,没有充足的理由认为反感“中国式过马路”与性别有关.    6分
(Ⅱ)的可能取值为
 
                                   9分
所以的分布列为:

0
1
2




的数学期望为:           13分
考点:独立性检验,离散型随机变量的分布列与期望。
点评:中档题,本题是概率统计的基本问题,考查离散型随机变量的分布列与期望,确定变量的取值,计算概率是关键.卡方计算公式不需要记忆。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

某数学老师对本校2013届高三学生的高考数学成绩按1:200进行分层抽样抽取了20名学生的成绩,并用茎叶图记录分数如图所示,但部分数据不小心丢失,同时得到如下所示的频率分布表:

分数段(分)
[50,70)
[70,90)
[90,110)
[110,130)
[130,150)
总计
频数
 
 
 
b
 
 
频率
a
0.25
 
 
 
 

(1)求表中a,b的值及分数在[90,100)范围内的学生人数,并估计这次考试全校学生数学成绩的及格率(分数在[90,150)内为及格):
(2)从成绩大于等于110分的学生中随机选两人,求这两人成绩的平均分不小于130分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了研究玉米品种对产量的影响,某农科院对一块试验田种植的一批玉米共10000 株的生长情况进行研究,现采用分层抽样方法抽取50株作为样本,统计结果如下:

 
高茎
矮茎
合计
圆粒
11
19
30
皱粒
13
7
20
合计
24
26
50
 (1) 现采用分层抽样的方法,从这个样本中取出10株玉米,再从这10株玉米中随机选出3株,求选到的3株之中既有圆粒玉米又有皱粒玉米的概率;
(2) 根据对玉米生长情况作出的统计,是否能在犯错误的概率不超过0.050的前提下认为玉米的圆粒与玉米的高茎有关?(下面的临界值表和公式可供参考:
P(K2≥k)
0.15
0.10
0.05
0.025
0.010
0.005
0.001
k
2.072
2.706
3.841
5.024
6.635
7.879
10.828
,其中)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

给出施化肥量(kg)对水稻产量(kg)影响的试验数据:

施化肥量x
 
15
 
20
 
25
 
30
 
水稻产量y
 
330
 
345
 
365
 
405
 
(1)试求出回归直线方程;
(2)请估计当施化肥量为10时,水稻产量为多少?
(已知:7.5×31.25+2.5×16.25+2.5×3.75+7.5×43.75=612.5,2×7.5×7.5+2×2.5×2.5=125)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某校的研究性学习小组为了研究高中学生的身体发育状况,在该校随机抽出120名17至18周岁的男生,其中偏重的有60人,不偏重的也有60人。在偏重的60人中偏高的有40人,不偏高的有20人;在不偏重的60人中偏高和不偏高人数各占一半
(1)根据以上数据建立一个列联表:

 
偏重
不偏重
合计
偏高
 
 
 
不偏高
 
 
 
合计
 
 
 
(2)请问该校17至18周岁的男生身高与体重是否有关?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2012年元旦、春节前夕,各个物流公司都出现了爆仓现象,直接原因就是网上疯狂的购物.某商家针对人们在网上购物的态度在某城市进行了一次调查,共调查了124人,其中女性70人,男性54人.女性中有43人对网上购物持赞成态度,另外27人持反对态度;男性中有21人赞成网上购物,另外33人持反对态度.
(Ⅰ) 估计该地区对网上购物持赞成态度的比例;
(Ⅱ) 有多大的把握认为该地区对网上购物持赞成态度与性别有关;
附:表1

K2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某市调研考试后,某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,得到如下的列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为.

 
优秀
非优秀
合计
甲班
10
 
 
乙班
 
30
 
合计
 
 
110
(1)请完成上面的列联表;
(2)根据列联表的数据,若按99%的可靠性要求,能否认为“成绩与班级有关系”;
(3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到9号或10号的概率.附: 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

我校高三年级进行了一次水平测试.用系统抽样的方法抽取了50名学生的数学成绩,准备进行分析和研究.经统计成绩的分组及各组的频数如下:
[40,50), 2;   [50,60), 3;  [60,70), 10;  [70,80), 15;   [80,90), 12;  [90,100], 8.
(Ⅰ)完成样本的频率分布表;画出频率分布直方图.
(Ⅱ)估计成绩在85分以下的学生比例;
(Ⅲ)请你根据以上信息去估计样本的众数、中位数、平均数.(精确到0.01)
频率分布表                       频率分布直方图
     

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了调查胃病是否与生活规律有关,调查某地540名40岁以上的人得结果如下:

 
患胃病
未患胃病
合计
生活不规律
60
260
320
生活有规律
20
200
220
合计
80
460
540
根据以上数据回答40岁以上的人患胃病与生活规律有关吗?

查看答案和解析>>

同步练习册答案