精英家教网 > 高中数学 > 题目详情

为了研究玉米品种对产量的影响,某农科院对一块试验田种植的一批玉米共10000 株的生长情况进行研究,现采用分层抽样方法抽取50株作为样本,统计结果如下:

 
高茎
矮茎
合计
圆粒
11
19
30
皱粒
13
7
20
合计
24
26
50
 (1) 现采用分层抽样的方法,从这个样本中取出10株玉米,再从这10株玉米中随机选出3株,求选到的3株之中既有圆粒玉米又有皱粒玉米的概率;
(2) 根据对玉米生长情况作出的统计,是否能在犯错误的概率不超过0.050的前提下认为玉米的圆粒与玉米的高茎有关?(下面的临界值表和公式可供参考:
P(K2≥k)
0.15
0.10
0.05
0.025
0.010
0.005
0.001
k
2.072
2.706
3.841
5.024
6.635
7.879
10.828
,其中)

(1);(2) 能在犯错误的概率不超过0.050的前提下认为玉米的圆粒与玉米的高茎有关. 

解析试题分析:本小题通过统计与概率的相关知识,具体涉及到随机变量的分布列、数学期望的求法和统计案例中独立性检验等知识内容,考查学生对数据处理的能力,对考生的运算求解能力、推理论证能力都有较高要求. 本题属于统计概率部分综合题,对考生的统计学的知识考查比较全面,是一道的统计学知识应用的基础试题. .(1)采用分层抽样的比例关系确定个数,然后利用排列组合的知识,借助随机事件的概率求解;(2)根据已知的公式,经过仔细的计算出的值,然后借助表格进行数据对比,得到相关性的结论.
试题解析:(1) 现采用分层抽样的方法,从样本中取出的10株玉米中圆粒的有6株,皱粒的有4株,所以从中再次选出3株时,既有圆粒又有皱粒的概率为.         (6分)
(2) 根据已知列联表:

 
高茎
矮茎
合计
圆粒
11
19
30
皱粒
13
7
20
合计
24
26
50
所以.
,因此能在犯错误的概率不超过0.050的前提下认为玉米的圆粒与玉米的高茎有关.                                             (12分)
考点:(1)随机变量的分布列;(2)统计案例中独立性检验

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

某中学对高三年级进行身高统计,测量随机抽取的20名学生的身高,其频率分布直方图如下(单位:cm)

(1)根据频率分布直方图,求出这20名学生身高中位数的估计值和平均数的估计值;
(2)在身高为140—160的学生中任选2个,求至少有一人的身高在150—160之间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某高校在2011年自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100]得到的频率分布直方图如图所示.

(1)分别求第3,4,5组的频率;
(2)若该校决定在笔试成绩高的第3,4,5组中用分层抽样抽取6名学生进入第二轮面试.
① 已知学生甲和学生乙的成绩均在第三组,求学生甲和学生乙同时进入第二轮面试的概率;
② 学校决定在这6名学生中随机抽取2名学生接受考官的面试,设第4组中有X名学生被考官面试,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某中学举行了一次“环保知识竞赛”, 全校学生参加了这次竞赛.为了了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分为100分)作为样本进行统计.请根据下面尚未完成并有局部污损的频率分布表和频率分布直方图(如图所示)解决下列问题:
频率分布表

组别
分组
频数
频率
第1组
[50,60)
8
0.16
第2组
[60,70)
a

第3组
[70,80)
20
0.40
第4组
[80,90)

0.08
第5组
[90,100]
2
b
 
合计


频率分布直方图

(Ⅰ)写出的值;
(Ⅱ)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取2名同学到广场参加环保知识的志愿宣传活动.求所抽取的2名同学中至少有1名同学来自第5组的概率;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


在对某校高一学生体育选修项目的一次调查中,共调查了160人,其中女生85人,男生75人.女生中有60人选修排球,其余的人选修篮球;男生中有20人选修排球,其余的人选修篮球.(每人必须选一项,且只能选一项)
根据以上数据建立一个2×2的列联表;
能否在犯错误的概率不超过0.001的前提下认为性别与体育选修项目有关?
参考公式及数据:,其中.

K2≥k0
0.50
0.40
0.25
0.15
0.10
0.05
0.025
0.010
0.005
0.001
k0
0.455
0.708
1.323
2.072
2.706
3.841
5.024
6.635
7.879
10.828
 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

一次考试中,五名学生的数学、物理成绩如下表所示:

(1)要从 5 名学生中选2 人参加一项活动,求选中的学生中至少有一人的物理成绩高于90分的概率;
(2)请在所给的直角坐标系中画出它们的散点图,并求这些数据的线性回归方程 .

(附:回归直线的方程是 : , 其中)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

以下是某地搜集到的新房屋的销售价格y和房屋的面积x的数据:

房屋面积(m2)
115
110
80
135
105
销售价格(万元)
24.8
21.6
18.4
29.2
22
(1)画出数据对应的散点图;
(2)求线性回归方程,并在散点图中加上回归直线;
(3)根据(2)的结果估计当房屋面积为150 m2时的销售价格.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

“中国式过马路”存在很大的交通安全隐患.某调查机构为了解路人对“中国式过马路 ”的态度是否与性别有关,从马路旁随机抽取30名路人进行了问卷调查,得到了如下列联表:

 
男性
女性
合计
反感
10

 
不反感

8
 
合计
 
 
30
已知在这30人中随机抽取1人抽到反感“中国式过马路 ”的路人的概率是.
(Ⅰ)请将上面的2×2列联表补充完整(在答题卡上直接填写结果,不需要写求解过程),并据此资料分析反感“中国式过马路 ”与性别是否有关?
(Ⅱ)若从这30人中的女性路人中随机抽取2人参加一活动,记反感“中国式过马路”的人数为X,求X的分布列和数学期望.
参考数据和公式:
2×2列联表公式:的临界值表:

0.50
0.40
0.25
0.15
0.10
0.05
0.025
0.010
0.005
0.001

0.455
0.708
1.323
2.072
2.706
3.841
5.024
6.635
7.879
10.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


在关于人体脂肪含量(百分比)和年龄关系的研究中,得到如下一组数据

年龄
23
27
39
41
45
50
脂肪含量
9.5
17.8
21.2
25.9
27.5
28.2
(Ⅰ)画出散点图,判断是否具有相关关系;

(Ⅱ)通过计算可知
请写出的回归直线方程,并计算出岁和岁的残差.

查看答案和解析>>

同步练习册答案