精英家教网 > 高中数学 > 题目详情

一次考试中,五名学生的数学、物理成绩如下表所示:

(1)要从 5 名学生中选2 人参加一项活动,求选中的学生中至少有一人的物理成绩高于90分的概率;
(2)请在所给的直角坐标系中画出它们的散点图,并求这些数据的线性回归方程 .

(附:回归直线的方程是 : , 其中)

(1)(2)

解析试题分析:解:(1)从名学生中任取名学生的所有情况为:共种情况.
其中至少有一人物理成绩高于分的情况有:种情况,
故上述抽取的人中选人,选中的学生的物理成绩至少有一人的成绩高于分的概率.                                          
(2)散点图如右所示.                               

可求得:
==
==,                 

==40,
=0.75,                
,                         
关于的线性回归方程是:
.                       
考点:回归分析
点评:本题考察回归分析及概率,是常考题。这类题重点在于计算。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

某种产品的广告费支出与销售额(单位:万元)之间有如下对应数据:


2
4
5
6
8

30
40
60
50
70
(1)求回归直线方程;
(2)试预测广告费支出为10万元时,销售额多大?
(3)在已有的五组数据中任意抽取两组,求至少有一组数据其预测值与实际值之差的绝对值不超过5的概率.
(参考数据:    
参考公式:线性回归方程系数:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2013年2月20日,针对房价过高,国务院常务会议确定五条措施(简称“国五条”).为此,记者对某城市的工薪阶层关于“国五条”态度进行了调查,随机抽取了60人,作出了他们的月收入的频率分布直方图(如图),同时得到了他们的月收入情况与“国五条”赞成人数统计表(如下表):

月收入(百元)
 
赞成人数
 
[15,25)
 
8
 
[25,35)
 
7
 
[35,45)
 
10
 
[45,55)
 
6
 
[55,65)
 
2
 
[65,75)
 
1
 
 
(I)试根据频率分布直方图估计这60人的平均月收入;
(Ⅱ)若从月收入(单位:百元)在[15,25),[25,35)的被调查者中各随机选取3人进行追踪调查,记选中的6人中不赞成“国五条”的人数为X,求随机变量X的分布列及数学期望. 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

以下茎叶图记录了甲、乙两组各四名同学的植树棵数.乙组记录中有一个数据模糊,无法确认,在图中以X表示.

(1)如果X=8,求乙组同学植树棵数的平均数和方差;
(2)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.
(注:方差s2[(x1)2+(x2)2+…+(xn)2]),其中为x1,x2,…,xn的平均数)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了研究玉米品种对产量的影响,某农科院对一块试验田种植的一批玉米共10000 株的生长情况进行研究,现采用分层抽样方法抽取50株作为样本,统计结果如下:

 
高茎
矮茎
合计
圆粒
11
19
30
皱粒
13
7
20
合计
24
26
50
 (1) 现采用分层抽样的方法,从这个样本中取出10株玉米,再从这10株玉米中随机选出3株,求选到的3株之中既有圆粒玉米又有皱粒玉米的概率;
(2) 根据对玉米生长情况作出的统计,是否能在犯错误的概率不超过0.050的前提下认为玉米的圆粒与玉米的高茎有关?(下面的临界值表和公式可供参考:
P(K2≥k)
0.15
0.10
0.05
0.025
0.010
0.005
0.001
k
2.072
2.706
3.841
5.024
6.635
7.879
10.828
,其中)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知三点(3,10),(7,20),(11,24)的横坐标x与纵坐标y具有线性关系,求其线性回归方程.
(参考公式:)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

给出施化肥量(kg)对水稻产量(kg)影响的试验数据:

施化肥量x
 
15
 
20
 
25
 
30
 
水稻产量y
 
330
 
345
 
365
 
405
 
(1)试求出回归直线方程;
(2)请估计当施化肥量为10时,水稻产量为多少?
(已知:7.5×31.25+2.5×16.25+2.5×3.75+7.5×43.75=612.5,2×7.5×7.5+2×2.5×2.5=125)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2012年元旦、春节前夕,各个物流公司都出现了爆仓现象,直接原因就是网上疯狂的购物.某商家针对人们在网上购物的态度在某城市进行了一次调查,共调查了124人,其中女性70人,男性54人.女性中有43人对网上购物持赞成态度,另外27人持反对态度;男性中有21人赞成网上购物,另外33人持反对态度.
(Ⅰ) 估计该地区对网上购物持赞成态度的比例;
(Ⅱ) 有多大的把握认为该地区对网上购物持赞成态度与性别有关;
附:表1

K2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某重点中学的高二英语老师Vivien,为调查学生的单词记忆时间开展问卷调查。发现在回收上来的1000份有效问卷中,有600名同学们背英语单词的时间安排在白天,另外400名学生晚上临睡前背。Vivien老师用分层抽样的方法抽取50名学生进行实验,实验方法是使两组学生记忆40个无意义音节(如XIQGEH),均要求在刚能全部记清时就停止识记,并在8小时后进行记忆测验。不同的是,甲组同学识记结束后一直不睡觉,8小时后测验;乙组同学识记停止后立刻睡觉,8小时后叫醒测验。
乙组同学识记停止8小时后的准确回忆(保持)情况如图。

(1)由分层抽样方法,抽取的50名学生乙组应有几名?
(2)从乙组准确回忆音节数在[8,20)范围内的学生中随机选2人,求两人均准确回忆12个(含12个)以上的概率;
(3)若从是否睡前记忆单词和单词小测能否优秀进行统计,运用22列联表进行独立性检验,经计算K2=4.069,参考下表你能得到什么统计学结论?

P(K≥k0)
 
0.100
 
0.050
 
0.025
 
0.010
 
0.001
 

查看答案和解析>>

同步练习册答案