精英家教网 > 高中数学 > 题目详情

数列{an}的前n项和为Sn,a1=1,数学公式
(1)求a2,a3
(2)求数列{an}的通项an
(3)求数列{nan}的前n项和Tn

解:(1)令n=1,得到S1=a1=a2,由a1=1,得到a2=2,
令n=2,得到S2=a1+a2=a3
则a3=2(1+2)=6;(3分)
(2)∵an+1=2Sn,∴Sn+1-Sn=2Sn

又∵S1=a1=1,
∴数列Sn是首项为1,公比为3的等比数列,Sn=3n-1(n∈N*).(5分)
当n≥2时,an=2Sn-1=2•3n-2(n≥2),
;(8分)
(3)Tn=a1+2a2+3a3+…+nan
当n=1时,T1=1;
当n≥2时,Tn=1+4•30+6•31+…+2n•3n-2①,
3Tn=3+4•31+6•32+…+2n•3n-1②,
①-②得:-2Tn=-2+4+2(31+32+…+3n-2)-2n•3n-1
=
=-1+(1-2n)•3n-1

又∵T1=a1=1也满足上式,
.(14分)
分析:(1)把n=1代入已知中,由a1的值即可求出a2的值,然后由a1和a2的值,把n=2代入中即可求出a3的值;
(2)根据数列的递推式把an+1=Sn+1-Sn代入中,确定出数列Sn是等比数列,由首项和公比写出数列Sn的通项公式,当n=1时,根据S1=a1得到a1的值,当n≥2时,再根据即可得到an的通项公式,写出数列{an}的通项的分段函数即可;
(3)根据(1)中求出的an的通项公式列举出数列{nan}的前n项和Tn的各项,当n=1时求出T1的值,当n≥2时,求出Tn,记作①,两边乘以3得到一个等式,记作②,①-②,根据等比数列的前n项和公式化简即可求出Tn的通项公式,把求出的T1代入也满足,进而求出数列{nan}的前n项和Tn
点评:本题主要考查数列求和的错位相减法、等比数列的前n项和公式以及确定等比数列的方法.考查学生的运算能力.学生做此类题时注意灵活利用an=Sn-Sn-1(n≥2且n为正整数).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设等比数列{an}的公比q≠1,Sn表示数列{an}的前n项的和,Tn表示数列{an}的前n项的乘积,Tn(k)表示{an}的前n项中除去第k项后剩余的n-1项的乘积,即Tn(k)=
Tn
ak
(n,k∈N+,k≤n),则数列
SnTn
Tn(1)+Tn(2)+…+Tn(n)
的前n项的和是
a12
2-q-q-1
(n+nq-
q-qn+1+1-q1-n
1-q
a12
2-q-q-1
(n+nq-
q-qn+1+1-q1-n
1-q
(用a1和q表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

若数列{an}的通项an=
1
pn-q
,实数p,q满足p>q>0且p>1,sn为数列{an}的前n项和.
(1)求证:当n≥2时,pan<an-1
(2)求证sn
p
(p-1)(p-q)
(1-
1
pn
)

(3)若an=
1
(2n-1)(2n+1-1)
,求证sn
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知Sn是数列{an}的前n项和,an>0,Sn=
a
2
n
+an
2
,n∈N*
(1)求证:{an}是等差数列;
(2)若数列{bn}满足b1=2,bn+1=2an+bn,求数列{bn}的通项公式bn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•商丘二模)数列{an}的前n项和为Sn,若数列{an}的各项按如下规律排列:
1
2
1
3
2
3
1
4
2
4
3
4
1
5
2
5
3
5
4
5
…,
1
n
2
n
,…,
n-1
n
,…有如下运算和结论:
①a24=
3
8

②数列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…是等比数列;
③数列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…的前n项和为Tn=
n2+n
4

④若存在正整数k,使Sk<10,Sk+1≥10,则ak=
5
7

其中正确的结论是
①③④
①③④
.(将你认为正确的结论序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①若数列{an}的前n项和Sn=2n+1,则数列{an}为等比数列;
②在△ABC中,如果A=60°,a=
6
,b=4
,那么满足条件的△ABC有两解;
③设函数f(x)=x|x-a|+b,则函数f(x)为奇函数的充要条件是a2+b2=0;
④设直线系M:xcosθ+(y-2)sinθ=1(0≤θ≤2π),则M中的直线所能围成的正三角形面积都相等.
其中真命题的序号是

查看答案和解析>>

同步练习册答案