精英家教网 > 高中数学 > 题目详情

【题目】如图,正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB=4,点E在CC1上且C1E=3EC
(1)证明:A1C⊥平面BED;
(2)求二面角A1﹣DE﹣B的余弦值.

【答案】
(1)解:如图,以DA,DC,DD1为x,y,z轴,建立空间直角坐标系,

则A1(2,0,4),B(2,2,0),C(0,2,0),D(0,0,0),E(0,2,1)

∴A1C⊥平面BED


(2)解:∵

设平面A1DE的法向量为

得﹣2x+2y﹣3z=0,﹣2x﹣4z=0,

同理得平面BDE的法向量为

∴cos< >= = =﹣

所以二面角A1﹣DE﹣B的余弦值为


【解析】(1)以DA,DC,DD1为x,y,z轴,建立空间直角坐标系,则 ,由向量法能证明A1C⊥平面BED.(2)由 ,得到平面A1DE的法向量 ,同理得平面BDE的法向量为 ,由向量法能求出二面角A1﹣DE﹣B的余弦值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某农场种植黄瓜,根据多年的市场行情得知,从春节起的300天内,黄瓜市场售价与上市时间的关系用图1所示的一条折线表示,黄瓜的种植成本与上市时间的关系用图2所示的抛物线表示.(注:市场售价和种植成本的单位:元/kg,时间单位:天)
(1)写出图1表示的市场售价与时间的函数关系式P=f(t);写出图2表示的种植成本与时间的函数关系式Q=g(x);

(2)认定市场售价减去种植成本为纯收益,问从春节开始的第几天上市的黄瓜纯收益最大?并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知y=f(x)是定义在R上的奇函数,当x<0时,f(x)=x+2,那么不等式2f(x)﹣1<0的解集是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,直线l的参数方程是 (t为参数).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C的极坐标方程为ρ2+12ρcosθ+11=0. (Ⅰ)说明C是哪种曲线?并将C的方程化为直角坐标方程;
(Ⅱ)直线l与C交于A,B两点,|AB|= ,求l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x)(x>0)满足:f(xy)=f(x)+f(y),当x<1时f(x)>0,且f( )=1;
(1)证明:y=f(x)是(x>0)上的减函数;
(2)解不等式f(x﹣3)>f( )﹣2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在长方体ABCD﹣A1B1C1D1中,AB=BC=4,AA1=2,则直线BC1与平面BB1D1D所成角的正弦值为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为菱形,∠DAB=60°,PD⊥平面ABCD,PD=AD=4,点E、F分别为AB和PD的中点.
(1)求证:直线AF∥平面PEC;
(2)求平面PAD与平面PEC所成锐二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若f(x)=x3+ax2+bx﹣a2﹣7a在x=1处取得极大值10,则 的值为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)= (a∈R)在点(1,f(1))处的切线与直线2x+y+1=0垂直.
(1)若对于任意的x∈[1,+∞),f(x)≤m(x﹣1)恒成立,求实数m的取值范围;
(2)设函数g(x)=(x+1)f(x)﹣b(x﹣1)在[1,e]上有且只有一个零点,求实数b取值范围.

查看答案和解析>>

同步练习册答案