精英家教网 > 高中数学 > 题目详情

已知直线过椭圆的上顶点B和左焦点F,且被圆截得的弦长为,若 则椭圆离心率的取值范围是(      )

A..       B.        C.       D.

 

【答案】

B

【解析】因为直线过椭圆的上顶点B和左焦点F,且被圆截得的弦长为格局联立方程组,结合弦长公式可知,若 则椭圆离心率的取值范围是,选B

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C的中心为原点O,点F(1,0)是它的一个焦点,直线l过点F与椭圆C交于A,B两点,当直线l垂直于x轴时,
OA
OB
=
1
2

(I)求椭圆C的方程;
(II)已知点P为椭圆的上顶点,且存在实数t使
PA
+
PB
=t
PF
成立,求实数t的值和直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•东城区一模)已知椭圆
y2
a2
+
x2
b2
=1(a>b>0)
的离心率为
2
2
,且椭圆上的点到两个焦点的距离和为2
2
.斜率为k(k≠0)的直线l过椭圆的上焦点且与椭圆相交于P,Q两点,线段PQ的垂直平分线与y轴相交于点M(0,m).
(Ⅰ)求椭圆的方程;
(Ⅱ)求m的取值范围;
(Ⅲ)试用m表示△MPQ的面积,并求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
y2
a2
+
x2
b2
=1(a
>b>0)的离心率为
2
2
,且椭圆上一点到两个焦点的距离之和为2
2
.斜率为k(k≠0)的直线l过椭圆的上焦点且与椭圆相交于P,Q两点,线段PQ的垂直平分线与y轴相交于点M(0,m).
(1)求椭圆的标准方程;
(2)求m的取值范围.
(3)试用m表示△MPQ的面积S,并求面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆方程为
y22
+x2=1
,斜率为k(k≠0)的直线l过椭圆的上焦点且与椭圆相交于P,Q两点,线段PQ的垂直平分线与y轴相交于点M(0,m).
(Ⅰ)求m的取值范围;
(Ⅱ)求△MPQ面积的最大值.

查看答案和解析>>

同步练习册答案