精英家教网 > 高中数学 > 题目详情
9.关于x的不等式$\frac{{(m-2){x^2}+2(m-2)x-4}}{{{x^2}-x+2}}<0$对一切x∈R恒成立,求实数m的取值范围.

分析 根据不等式恒成立,转化为不等式恒成立问题,结合一元二次不等式与判别式△的关系进行求解即可.

解答 解:∵${x^2}-x+2={(x-\frac{1}{2})^2}+\frac{3}{4}≥\frac{3}{4}>0$…(2分)
故只需(m-2)x2+2(m-2)x-4<0对一切x∈R恒成立.…(4分)
①当m-2=0即m=2时,-4<0恒成立,∴m=2…(6分)
②当m-2≠0即m≠2时,由二次函数图象可知,
只需$\left\{{\begin{array}{l}{m-2<0}\\{△<0}\end{array}}\right.$,即$\left\{{\begin{array}{l}{m<2}\\{-2<m<2}\end{array}}\right.$…(10分)
∴-2<m<2…(11分)
综上,m的取值范围是(-2,2]…(12分)

点评 本题主要考查不等式恒成立问题,根据条件转化为不等式恒成立是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.在四棱锥P-ABCD中,已知PA⊥平面ABCD,PB与平面ABC成60°的角,底面ABCD是直角梯形,∠ABC=∠BAD=90°,AB=BC=$\frac{1}{2}$AD.
(1)求证:平面PCD⊥平面PAC;
(2)设E是棱PD上一点,且PE=$\frac{1}{3}$PD,求异面直线AE与PB所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}的前n项和为Sn,满足a1=2,Sn+2=2an,n∈N*
(1)求an
(2)求证:$\frac{a_1}{{({{a_1}+1})({{a_2}+1})}}+\frac{a_2}{{({{a_2}+1})({{a_3}+1})}}+…+\frac{a_n}{{({{a_n}+1})({{a_{n+1}}+1})}}<\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若椭圆C1:$\frac{{x}^{2}}{{{a}_{1}}^{2}}$+$\frac{{y}^{2}}{{{b}_{1}}^{2}}$=1(a1>b1>0)和椭圆C2:$\frac{{x}^{2}}{{{a}_{2}}^{2}}$+$\frac{{y}^{2}}{{{b}_{2}}^{2}}$=1(a2>b2>0)的焦点相同,且a1>a2,则下面结论正确的是(  )
①椭圆C1和椭圆C2一定没有公共点           ②a12-a22=b12-b22
③$\frac{{a}_{1}}{{a}_{2}}$>$\frac{{b}_{1}}{{b}_{2}}$                                 ④a1-a2<b1-b2
A.②③④B.①③④C.①②④D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.顶点在原点、坐标轴为对称轴的抛物线,过点(-1,2),则它的方程是(  )
A.y=2x2或y2=-4xB.y2=-4x或x2=2yC.x2=-$\frac{1}{2}$yD.y2=-4x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若2sin2α+sin2β-2sinα=0,则cos2α+cos2β的取值范围为[1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求下列函数的导数.
(1)$y=\frac{e^x}{x}$;           
(2)y=(2x2-1)(3x+1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知Sn是等差数列{an}的前n项和,且S6>S7>S5,有下列四个命题:①d<0;②S11>0;③S12<0;④S8>S5,其中正确命题序号是(  )
A.②③B.①④C.①③D.①②

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在极坐标系中,与圆ρ=2cosθ相切,且与极轴平行的直线的极坐标方程是ρsinθ=±1.

查看答案和解析>>

同步练习册答案