精英家教网 > 高中数学 > 题目详情

(理)若(ax-1)5的展开式中x3的系数是80,则实数a的值是

[  ]

A.-2

B.

C.

D.2

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)的图象与函数h(x)=x+
1
x
+2的图象关于点A(0,1)对称.
(1)求f(x)的解析式;
(2)(文)若g(x)=f(x)•x+ax,且g(x)在区间(0,2]上为减函数,求实数a的取值范围.
(理)若g(x)=f(x)+
a
x
,且g(x)在区间(0,2]上为减函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

关于函数y=f(x),有下列命题:
①若a∈[-2,2],则函数f(x)=
x2+ax+1
的定域为R;
②若f(x)=log
1
2
(x2-3x+2)
,则f(x)的单调增区间为(-∞,
3
2
)

③(理)若f(x)=
1
x2-x-2
,则
lim
x→2
[(x-2)f(x)]=0

(文)若f(x)=
1
x2-x-2
,则值域是(-∞,0)∪(0,+∞)
④定义在R的函数f(x),且对任意的x∈R都有:f(-x)=-f(x),f(1+x)=f(1-x),则4是y=f(x)的一个周期.
其中真命题的编号是
 
.(文理相同)

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)若关于x的不等式
1
2
lg(1-x2)-lg(ax+b)>0
的解集为(-
2
3
1
2
)
,则满足条件的所有实数对(a,b)共有
3
3
对.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•嘉定区二模)设函数f(x)=ax-(k-1)a-x(a>0且a≠1)是定义域为R的奇函数.
(1)求k的值;
(2)(理)若f(1)=
32
,且g(x)=a2x+a-2x-2m•f(x)在[1,+∞)上的最小值为-2,求m的值.
(文)若f(1)<0,试说明函数f(x)的单调性,并求使不等式f(x2+tx)+f(4-x)<0恒成立的取值范围.

查看答案和解析>>

同步练习册答案