精英家教网 > 高中数学 > 题目详情
(2013•海淀区二模)已知椭圆M:
x2
a2
+
y2
b2
=1  (a>b>0)
的四个顶点恰好是一边长为2,一内角为60°的菱形的四个顶点.
(Ⅰ)求椭圆M的方程;
(Ⅱ)直线l与椭圆M交于A,B两点,且线段AB的垂直平分线经过点(0,  -
1
2
)
,求△AOB(O为原点)面积的最大值.
分析:(Ⅰ)依题意,可求得a=
3
,b=1,从而可得椭圆M的方程;
(Ⅱ)设A(x1,y1),B(x2,y2),依题意,直线AB有斜率,可分直线AB的斜率k=0与直线AB的斜率k≠0讨论,利用弦长公式,再结合基本不等式即可求得各自情况下S△AOB的最大值.
解答:解:(Ⅰ)因为椭圆
x2
a2
+
y2
b2
=1(a>b>0)的四个顶点恰好是一边长为2,一内角为60°的菱形的四个顶点,
∴a=
3
,b=1,椭圆M的方程为:
x2
3
+y2=1…4分
(Ⅱ)设A(x1,y1),B(x2,y2),因为AB的垂直平分线经过点(0,-
1
2
),显然直线AB有斜率,
当直线AB的斜率为0时,AB的垂直平分线为y轴,则x1=-x2,y1=y2
所以S△AOB=
1
2
|2x1||y1|=|x1||y1|=|x1|•
1-
x12
3
=
x12(1-
x12
3
)
=
1
3
x
1
2
(1-x12)

x12(3-x12)
x12+(3-x12)
2
=
3
2

∴S△AOB
3
2
,当且仅不当|x1|=
6
2
时,S△AOB取得最大值为
3
2
…7分
当直线AB的斜率不为0时,则设AB的方程为y=kx+t,
所以
y=kx+t
x2
3
+y2=1
,代入得到(3k2+1)x2+6ktx+3t2-3=0,
当△=4(9k2+3-3t2)>0,即3k2+1>t2①,方程有两个不同的实数解;
又x1+x2=
-6kt
3k2+1
x1+x2
2
=
-3kt
3k2+1
…8分
所以
y1+y2
2
=
t
3k2+1
,又
y1+y2
2
+
1
2
0-
x1+x2
2
=-
1
k
,化简得到3k2+1=4t②
代入①,得到0<t<4,…10分
又原点到直线的距离为d=
|t|
k2+1

|AB|=
1+k2
|x1-x2|=
1+k2
4(9k2+3-3t2)
3k2+1

所以S△AOB=
1
2
|AB||d|=
1
2
|t|
k2+1
1+k2
4(9k2+3-3t2)
3k2+1

化简得:S△AOB=
1
4
3(4t-t2)
…12分
∵0<t<4,所以当t=2时,即k=±
7
3
时,S△AOB取得最大值为
3
2

综上,S△AOB取得最大值为
3
2
…14分
点评:本题考查直线与圆锥曲线的关系,考查椭圆的标准方程,着重考查方程思想分类讨论思想与弦长公式,基本不等式的综合运用,考查求解与运算能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•海淀区二模)双曲线C的左右焦点分别为F1,F2,且F2恰为抛物线y2=4x的焦点,设双曲线C与该抛物线的一个交点为A,若△AF1F2是以AF1为底边的等腰三角形,则双曲线C的离心率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•海淀区二模)已知函数f(x)=ex,A(a,0)为一定点,直线x=t(t≠0)分别与函数f(x)的图象和x轴交于点M,N,记△AMN的面积为S(t).
(Ⅰ)当a=0时,求函数S(t)的单调区间;
(Ⅱ)当a>2时,若?t0∈[0,2],使得S(t0)≥e,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•海淀区二模)集合A={x|(x-1)(x+2)≤0},B={x|x<0},则A∪B=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•海淀区二模)设A是由m×n个实数组成的m行n列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”.
(Ⅰ) 数表A如表1所示,若经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负实数,请写出每次“操作”后所得的数表(写出一种方法即可); 
1 2 3 -7
-2 1 0 1
表1
(Ⅱ) 数表A如表2所示,若必须经过两次“操作”,才可使得到的数表每行的各数之和与每列的各数之和均为非负整数,求整数a的所有可能值;
a a2-1 -a -a2
2-a 1-a2 a-2 a2
表2
(Ⅲ)对由m×n个实数组成的m行n列的任意一个数表A,能否经过有限次“操作”以后,使得到的数表每行的各数之和与每列的各数之和均为非负整数?请说明理由.

查看答案和解析>>

同步练习册答案