精英家教网 > 高中数学 > 题目详情
(2013•海淀区二模)已知函数f(x)=ex,A(a,0)为一定点,直线x=t(t≠0)分别与函数f(x)的图象和x轴交于点M,N,记△AMN的面积为S(t).
(Ⅰ)当a=0时,求函数S(t)的单调区间;
(Ⅱ)当a>2时,若?t0∈[0,2],使得S(t0)≥e,求a的取值范围.
分析:(Ⅰ)先根据题意得到函数S(t)的解析式,再由导数与函数单调性的关系解不等式即可求函数S(t)的单调区间;
(Ⅱ)当a>2时,若?t0∈[0,2],使得S(t0)≥e,转化为S(t)在[0,2]上的最大值一定大于等于e.先求S′(t)=-
1
2
[t-(a-1)]et
,令S'(t)=0,得t=a-1.下面对字母a进行分类讨论:a-1≥2;a-1<2.可得出关于a的不等关系,从而可求出a的范围;
解答:解:(I) 因为S(t)=
1
2
|t-a|et
,其中t≠a…(2分)
当a=0,S(t)=
1
2
|t|et
,其中t≠0
当t>0时,S(t)=
1
2
tet
S′(t)=
1
2
(t+1)et

所以S'(t)>0,所以S(t)在(0,+∞)上递增,…(4分)
当t<0时,S(t)=-
1
2
tet
S′(t)=-
1
2
(t+1)et

S′(t)=-
1
2
(t+1)et>0
,解得t<-1,所以S(t)在(-∞,-1)上递增
S′(t)=-
1
2
(t+1)et<0
,解得t>-1,所以S(t)在(-1,0)上递减 …(7分)
综上,S(t)的单调递增区间为(0,+∞),(-∞,-1),S(t)的单调递增区间为(-1,0)
(II)因为S(t)=
1
2
|t-a|et
,其中t≠a
当a>2,t∈[0,2]时,S(t)=
1
2
(a-t)et

因为?t0∈[0,2],使得S(t0)≥e,所以S(t)在[0,2]上的最大值一定大于等于e,
S′(t)=-
1
2
[t-(a-1)]et
,令S'(t)=0,得t=a-1…(8分)
当a-1≥2时,即a≥3时S′(t)=-
1
2
[t-(a-1)]et>0
对t∈(0,2)成立,S(t)单调递增,
所以当t=2时,S(t)取得最大值S(2)=
1
2
(a-2)e2

1
2
(a-2)e2≥e
,解得   a≥
2
e
+2

所以a≥3…(10分)
当a-1<2时,即a<3时S′(t)=-
1
2
[t-(a-1)]et>0
对t∈(0,a-1)成立,S(t)单调递增,S′(t)=-
1
2
[t-(a-1)]et<0
对t∈(a-1,2)成立,S(t)单调递减,
所以当t=a-1时,S(t)取得最大值S(a-1)=
1
2
ea-1

S(a-1)=
1
2
ea-1≥e
,解得a≥ln2+2,
所以ln2+2≤a<3…(12分)
综上所述,ln2+2≤a…(13分)
点评:本题考查了应用导数研究函数的单调性,以及函数在闭区间上的最值问题,同时考查分析问题、解决问题的能力以及分类讨论的数学思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•海淀区二模)双曲线C的左右焦点分别为F1,F2,且F2恰为抛物线y2=4x的焦点,设双曲线C与该抛物线的一个交点为A,若△AF1F2是以AF1为底边的等腰三角形,则双曲线C的离心率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•海淀区二模)已知椭圆M:
x2
a2
+
y2
b2
=1  (a>b>0)
的四个顶点恰好是一边长为2,一内角为60°的菱形的四个顶点.
(Ⅰ)求椭圆M的方程;
(Ⅱ)直线l与椭圆M交于A,B两点,且线段AB的垂直平分线经过点(0,  -
1
2
)
,求△AOB(O为原点)面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•海淀区二模)集合A={x|(x-1)(x+2)≤0},B={x|x<0},则A∪B=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•海淀区二模)设A是由m×n个实数组成的m行n列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”.
(Ⅰ) 数表A如表1所示,若经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负实数,请写出每次“操作”后所得的数表(写出一种方法即可); 
1 2 3 -7
-2 1 0 1
表1
(Ⅱ) 数表A如表2所示,若必须经过两次“操作”,才可使得到的数表每行的各数之和与每列的各数之和均为非负整数,求整数a的所有可能值;
a a2-1 -a -a2
2-a 1-a2 a-2 a2
表2
(Ⅲ)对由m×n个实数组成的m行n列的任意一个数表A,能否经过有限次“操作”以后,使得到的数表每行的各数之和与每列的各数之和均为非负整数?请说明理由.

查看答案和解析>>

同步练习册答案