精英家教网 > 高中数学 > 题目详情
长为l(l<1)的线段AB的两个端点在抛物线y2=x上滑动,则线段AB中点M到y轴距离的最小值是(  )
分析:设线段AB的两个端点A(x1,y1),B(x2,y2),将两点分别代入抛物线解析式得到y12=x1,y22=x2,由A和B的位置得到y1y2<0,联立两等式表示出y1y2,再由抛物线开口向右,得到线段AB中点M到y轴距离,即为M的横坐标,利用线段中点坐标公式表示出M的横坐标,利用基本不等式求出横坐标的最小值,以及此时x1=x2,再由线段AB的长为l,由两点的坐标,利用两点间的距离公式列出关系式,将x1=x2代入,利用完全平方公式展开后,将y12=x1,y22=x2及表示出的y1y2代入,表示出x1+x2,代入M的横坐标中,即可表示出线段AB中点M到y轴距离的最小值.
解答:解:设A(x1,y1),B(x2,y2),
将A和B分别代入抛物线y2=x得:y12=x1,y22=x2
又y1y2<0,
∴x1x2=(y1y22,即y1y2=-
x1x2

∵抛物线y2=x开口向右,
∴线段AB中点M到y轴的距离为
x1+x2
2

由x1+x2≥2
x1x2
,得到当且仅当x1=x2时,
x1+x2
2
取得最小值,
∴此时x1+x2=2
x1x2
,又线段AB的长为l,
∴(x1-x22+(y1-y22=(y1-y22=l2
即y12+y22-2y1y2=x1+x2+2
x1x2
=2(x1+x2)=l2
∴x1+x2=
1
2
l2
则线段AB中点M到y轴距离的最小值为
x1+x2
2
=
l2
4

故选D
点评:此题考查了两点间的距离公式,抛物线的图象与性质,线段中点坐标公式,以及基本不等式的运用,利用了整体代入的思想,其技巧性较强,要求学生掌握知识要全面.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•海淀区二模)已知椭圆M:
x2
a2
+
y2
b2
=1  (a>b>0)
的四个顶点恰好是一边长为2,一内角为60°的菱形的四个顶点.
(Ⅰ)求椭圆M的方程;
(Ⅱ)直线l与椭圆M交于A,B两点,且线段AB的垂直平分线经过点(0,  -
1
2
)
,求△AOB(O为原点)面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
3
3
,直线l:y=x+2与以原点为圆心、椭圆C1的短半轴长为半径的圆相切.
(Ⅰ)求椭圆C1的方程;
(Ⅱ)设椭圆C1的左焦点为F1,右焦点为F2,直线l1过点F1且垂直于椭圆的长轴,动直线l2垂直l1于点P,线段PF2的垂直平分线交l2于点M,求动点M的轨迹C2的方程;
(Ⅲ)过椭圆C1的焦点F2作直线l与曲线C2交于A、B两点,当l的斜率为
1
2
时,直线l1上是否存在点M,使AM⊥BM?若存在,求出M的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,一棱长为2的正四面体O-ABC的顶点O在平面α内,底面ABC平行于平面α,平面OBC与平面α的交线为l.
(1)当平面OBC绕l顺时针旋转与平面α第一次重合时,求平面OBC转过角的正弦
值.
(2)在上述旋转过程中,△OBC在平面α上的投影为等腰△OB1C1(如图1),B1C1的中点为O1.当AO⊥平面α时,问在线段OA上是否存在一点P,使O1P⊥OBC?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

一根长为l cm的线,一端固定,另一端悬挂一个小球,小球摆动时,离开平衡位置的位移s(单位:cm)与时间t(单位:s)的函数关系是s=3cos(+),t∈[0,+∞).

(1)求小球摆动的周期;

(2)已知g≈980 cm/s2,要使小球摆动的周期是1 s,线的长度l应当是多少?(精确到0.1 cm)

查看答案和解析>>

科目:高中数学 来源:2010年北京大学附中高三数学提高练习试卷(4)(解析版) 题型:解答题

如图,一棱长为2的正四面体O-ABC的顶点O在平面α内,底面ABC平行于平面α,平面OBC与平面α的交线为l.
(1)当平面OBC绕l顺时针旋转与平面α第一次重合时,求平面OBC转过角的正弦
值.
(2)在上述旋转过程中,△OBC在平面α上的投影为等腰△OB1C1(如图1),B1C1的中点为O1.当AO⊥平面α时,问在线段OA上是否存在一点P,使O1P⊥OBC?请说明理由.

查看答案和解析>>

同步练习册答案