精英家教网 > 高中数学 > 题目详情
7.证明下列等式,并从中归纳出一个一般性的结论.
2cos$\frac{π}{4}$=$\sqrt{2}$;
2cos$\frac{π}{8}$=$\sqrt{2+\sqrt{2}}$;
2cos$\frac{π}{16}$=$\sqrt{2+\sqrt{2+\sqrt{2}}}$;

分析 根据半角公式可证明已知的三个等式,再由题意,观察各式可得其规律,用n将规律表示出来一般性结论.

解答 证明:∵cos$\frac{π}{4}$=$\frac{\sqrt{2}}{2}$,∴2cos$\frac{π}{4}$=$\sqrt{2}$;
2cos$\frac{π}{8}$=2$\sqrt{\frac{1+\frac{\sqrt{2}}{2}}{2}}$=$\sqrt{2+\sqrt{2}}$
2cos$\frac{π}{16}$=2$\sqrt{\frac{1+\frac{\sqrt{2+\sqrt{2}}}{2}}{2}}$=$\sqrt{2+\sqrt{2+\sqrt{2}}}$,观察下列等式:
2cos$\frac{π}{4}$=$\sqrt{2}$;
2cos$\frac{π}{8}$=$\sqrt{2+\sqrt{2}}$;
2cos$\frac{π}{16}$=$\sqrt{2+\sqrt{2+\sqrt{2}}}$;

由上边的式子,我们可以推断:
2cos$\frac{π}{{2}^{n+1}}$=$\begin{array}{c}\\ \stackrel{n层}{\sqrt{2+\sqrt{2+…+\sqrt{2}}}}\end{array}\right.$(n∈N*

点评 归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知f(0)=0,f($\frac{π}{2}$)=1,解函数方程f(x+y)+f(x-y)=2f(x)cosy.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设集合I={a1,a2,…,an },若集合A,B满足A∪B=I,则称{A,B}为集合I的一种分拆,并规定,当且仅当A=B时,(A,B)与(B,A)为集合I的同一分拆,则集合I的不同分拆的种数为(  )
A.3nB.2nC.3n-1D.2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,∠A、B、C的对边分别为a、b、c,若向量$\overrightarrow{p}$=(bcosC,a+c),$\overrightarrow{q}$=((2a-c)cosB,4),且$\overrightarrow{p}$=$\overrightarrow{q}$
(1)求角B的大小.
(2)如果b=2$\sqrt{2}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知动点P与定点A(-2,0)、B(2,0)连线的斜率乘积kPA•kPB=-$\frac{1}{4}$.
(1)求动点P的轨迹E的方程;
(2)设直线l不与坐标轴垂直,且与轨迹E交于不同两点M、N,若点B在以MN为直径的圆内,求l在x轴上截距的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知在△ABC中,∠A:∠B=1:2,∠ACB的平分线CD把△ABC的面积分成3:2两部分,则cosA=(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合A={1,3,9},B={1,9},则A∪B=(  )
A.{1,3,9}B.{1,9}C.{3}D.{3,9}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知结合A={x|y=$\sqrt{x+1}$},集合B={y|y=sinx},则下列结论正确的是(  )
A.A∩B=∅B.A∪B=BC.A∩B=AD.B?A

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.用反证法证明命题“三角形中最多只有一个内角是钝角”时,结论的否定是(  )
A.没有一个内角是钝角B.只有两个内角是钝角
C.至少有两个内角是钝角D.三个内角都是钝角

查看答案和解析>>

同步练习册答案