精英家教网 > 高中数学 > 题目详情

个同样型号的产品中,有个是正品,个是次品,从中任取个,求(1)其中所含次品数的期望、方差;(2)事件“含有次品”的概率。

(1)E(x)=,D(x)=;(2)P(A)=.

解析试题分析:(1)依题意可知随机变量ξ的一切可取值为0,1,2,求出相应的概率,可求所含次品数ξ的期望、方差;(2)事件“含有次品”,则随机变量ξ取1,2,从而可求概率.
试题解析:(1)依题意可知随机变量的一切可取值为,则



(2)设集合A为抽取的3件产品中含有次品
.
考点:离散型随机变量的期望与方差.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

生产A,B两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品,现随机抽取这两种元件各100件进行检测,检测结果统计如下:

测试指标
[70,76)
[76,82)
[82,88)
[88,94)
[94,100]
元件A
8
12
40
32
8
元件B
7
18
40
29
6
(1)试分别估计元件A、元件B为正品的概率;
(2)生产一件元件A,若是正品可盈利50元,若是次品则亏损10元;生产一件元件B,若是正品可盈利100元,若是次品则亏损20元,在(1)的前提下:
(i)求生产5件元件B所获得的利润不少于300元的概率;
(ii)记X为生产1件元件A和1件元件B所得的总利润,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

第17届亚运会将于2014年9月18日至10月4日在韩国仁川进行,为了搞好接待工作,组委会招募了16名男志愿者和14名女志愿者,调查发现,男、女志愿者中分别有10人和6人喜爱运动,其余不喜爱.
(1)根据调查数据制作2×2列联表;
(2)根据列联表的独立性检验,能否认为性别与喜爱运动有关?

参考数据
时,无充分证据判定变量有关联,可以认为两变量无关联;
时,有把握判定变量有关联;
时,有把握判定变量有关联;
时,有把握判定变量有关联.
(参考公式:,其中.)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数y=x-1,令x=―4,―3,―2,-1,0,1,2,3,4,可得函数图象上的九个点,在这九个点中随机取出两个点P1(x1,y1),P2(x2,y2),
(1)求P1,P2两点在双曲线xy=6上的概率;
(2)求P1,P2两点不在同一双曲线xy=k(k≠0)上的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了提高食品的安全度,某食品安检部门调查了一个海水养殖场的养殖鱼的有关情况,安检人员从这个海水养殖场中不同位置共捕捞出100条鱼,称得每条鱼的质量(单位:kg),并将所得数据进行统计得下表.若规定超过正常生长速度(1.0~1.2 kg/年)的比例超过15%,则认为所饲养的鱼有问题,否则认为所饲养的鱼没有问题.

鱼的
质量
[1.00,
1.05)
[1.05,
1.10)
[1.10,
1.15)
[1.15,
1.20)
[1.20,
1.25)
[1.25,
1.30)
鱼的
条数
3
20
35
31
9
2
(1)根据数据统计表,估计数据落在[1.20,1.30)中的概率约为多少,并判断此养殖场所饲养的鱼是否存在问题?
(2)上面捕捞的100条鱼中间,从质量在[1.00,1.05)和[1.25,1.30)的鱼中,任取2条鱼来检测,求恰好所取得的鱼的质量在[1.00,1.05)和[1.25,1.30)各有1条的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

经销商经销某种农产品,在一个销售季度内,每售出1 t该产品获利润500元,未售出的产品,每1 t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130 t该农产品.以X(单位: t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.

(1)将T表示为X的函数;
(2)根据直方图估计利润T不少于57 000元的概率;
(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若x∈[100,110),则取X=105,且X=105的概率等于需求量落入[100,110)的频率,求T的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

正四面体ABCD的体积为V,P是正四面体ABCD的内部的一个点.
(1)设“VPABCV”的事件为X,求概率P(X);
(2)设“VPABCV”且“VPBCDV”的事件为Y,求概率P(Y).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

甲、乙两人进行投篮比赛,两人各投3球,谁投进的球数多谁获胜,已知每次投篮甲投进的概率为,乙投进的概率为,求:
(1)甲投进2球且乙投进1球的概率;
(2)在甲第一次投篮未投进的条件下,甲最终获胜的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=x2+bx+c,其中b,c是某范围内的随机数,分别在下列条件下,求事件A“f(1)≤5且f(0)≤3”发生的概率.
(1)若随机数b,c∈{1,2,3,4}.
(2)已知随机函数Rand( )产生的随机数的范围为{x|0≤x≤1},b,c是算法语句b="4*Rand(" )和c="4*Rand(" )的执行结果.(注:符号“*”表示“乘号”)

查看答案和解析>>

同步练习册答案