精英家教网 > 高中数学 > 题目详情
已知三次函数f(x)的导函数f′(x)=3x2-3ax,f(0)=b,(a、b实数).若f(x)在区间[-1,1]上的最小值、最大值分别为-2,1,且1<a<2,求函数f(x)的解析式.
分析:据导函数的形式设出f(x),求出导函数为0的两个根,判断出根与定义域的关系,求出函数的最值,列出方程求出f(x)的解析式.
解答:解:∵f′(x)=3x2-3ax,f(0)=b,
∴f(x)=x3-
3
2
ax2
+b,
由f′(x)=3x(x-a)=0,得x1=0,x2=a,
∵x∈[-1,1],1<a<2,
∴当x∈[-1,0)时,f′(x)>0,f(x)递增;当x∈(0,1]时,f′(x)<0,f(x)递减.
∴f(x)在区间[-1,1]上的最大值为f(0),
∵f(0)=b,∴b=1,
∵f(1)=1-
3
2
a+1=2-
3
2
a
,f(-1)=-1-
3
2
a+1=-
3
2
a,
∴f(-1)<f(1),
∴f(-1)是函数f(x)的最小值,
∴-
3
2
a=-2,∴a=
4
3

∴f(x)=x3-2x2+1.
点评:本题考查利用导数研究函数的最值,一定要注意导数为0的根与定义域的关系.解决本题的关键是利用导数求得函数最值,然后利用条件列出方程.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知三次函数f(x)=ax3+bx2+cx(a,b,c∈R).
(Ⅰ)若函数f(x)过点(-1,2)且在点(1,f(1))处的切线方程为y+2=0,求函数f(x)的解析式;
(Ⅱ)在(Ⅰ)的条件下,若对于区间[-3,2]上任意两个自变量的值x1,x2都有|f(x1)-f(x2)|≤t,求实数t的最小值;
(Ⅲ)当-1≤x≤1时,|f′(x)|≤1,试求a的最大值,并求a取得最大值时f(x)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

19、已知三次函数f(x)=x3+ax2+bx+c在x=1和x=-1时取极值,且f(-2)=-4.
(I)求函数y=f(x)的表达式;
(II)求函数y=f(x)的单调区间和极值;
(Ⅲ)若函数g(x)=f(x-m)+4m(m>0)在区间[m-3,n]上的值域为[-4,16],试求m、n应满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三次函数f(x)=ax3+bx2+cx+d,(a,b,c,d∈R),命题p:y=f(x)是R上的单调函数;命题q:y=f(x)的图象与x轴恰有一个交点.则p是q的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三次函数f(x)=x3+ax2+bx+c在x=1和x=-1时取极值,且f(-2)=-4.
(1)求函数f(x)的表达式; 
(2)求函数的单调区间和极值;
(3)求函数在区间[-2,5]的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知三次函数f(x)=ax3+bx2+cx+d的图象如图所示,则
f′(-3)f′(1)
=
 

查看答案和解析>>

同步练习册答案