精英家教网 > 高中数学 > 题目详情

如图,在三棱锥D-ABC中,DA⊥平面ABC,∠ACB=,∠ABD=,AC=BC.求异面直线AB与CD所成的角的余弦值.

答案:
解析:

  解 以AB,BC为邻边作ABCM,则∠DCM是异面直线AB,CD所成的角.设AC= BC= a,∵∠ACB=,∴AB=a,MC=a,∵DA⊥平面ABC,∴∠DAB=∠DAC=∠DAM=,又∠ABD=,∴DA=a.又AM= a,∴DM=a,DC=a.∴cos∠DCM=

  说明 求两异面直线所成的角,一般都是把它转化为求两相交直线所成的角,本题用的是平行四边形性质,在图形中反映的分别是在图形内平移和向形外平移,如分别取BD,AB,AC,BC的P,Q,M,N,则∠PNM也是所求的角,同样可得cos∠PNM=


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E为BC的中点,F在棱AC上,且AF=3FC.
(1)求三棱锥D-ABC的表面积;
(2)求证AC⊥平面DEF;
(3)若M为BD的中点,问AC上是否存在一点N,使MN∥平面DEF?若存在,说明点N的位置;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥D-ABC中,△ADC,△ACB均为等腰直角三角形AD=CD=
2
,∠ADC=∠ACB=90°,M为线段AB的中点,侧面ADC⊥底面ABC.
(Ⅰ)求证:BC⊥平面ACD;
(Ⅱ)求异面直线BD与CM所成角的余弦值;
(Ⅲ)求二面角A-CD-M的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

如图,在三棱锥DABC中,已知△BCD是正三角

形,AB⊥平面BCDABBCaEBC的中点,

F在棱AC上,且AF=3FC

(1)求三棱锥DABC的表面积;

(2)求证AC⊥平面DEF

(3)若MBD的中点,问AC上是否存在一点N

使MN∥平面DEF?若存在,说明点N的位置;若不

存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源:正定中学2010高三下学期第一次考试(数学理) 题型:解答题

(本小题满分12分)
如图,在三棱锥DABC中,已知△BCD是正三角
形,AB⊥平面BCDABBCaEBC的中点,
F在棱AC上,且AF=3FC
(1)求三棱锥DABC的表面积;
(2)求证AC⊥平面DEF
(3)若MBD的中点,问AC上是否存在一点N
使MN∥平面DEF?若存在,说明点N的位置;若不
存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源:正定中学2010高三下学期第一次考试(数学理) 题型:解答题

(本小题满分12分)

如图,在三棱锥DABC中,已知△BCD是正三角

形,AB⊥平面BCDABBCaEBC的中点,

F在棱AC上,且AF=3FC

(1)求三棱锥DABC的表面积;

(2)求证AC⊥平面DEF

(3)若MBD的中点,问AC上是否存在一点N

使MN∥平面DEF?若存在,说明点N的位置;若不

存在,试说明理由.

 

查看答案和解析>>

同步练习册答案