精英家教网 > 高中数学 > 题目详情
如图1-2-6,梯形ABCD中,点E、F分别在AB、CD上,EF∥AD,=.试探究EF、AD、BC之间的关系,并证明.

1-2-6

思路分析:首先从特例出发,如果=,取EB中点G,过G作GH∥BC,如图1-2-7.

1-2-7

则有H为FC的中点,

EF为梯形AGHD的中位线,

GH为梯形EBCF的中位线.∴EF=(AD+GH),GH=(EF+BC).

消去GH得3EF=BC+2AD.

同理,如果=,得5EF=2BC+3AD.

解:如果,可以猜想(m+n)EF=mBC+nAD.

下面给出证明:

连结BD,交EF于G.

∵EG∥AD,∴.∴EG=AD.

又∵AD∥EF∥BC,∴.

∵GF∥BC,∴.∴GF=BC.

∴EF=GF+EG=BC+AD.

∴(m+n)EF=mBC+nAD.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图(1)在直角梯形PDCB中,PD∥CB,CD⊥PD,PD=6,BC=3,DC=
6
,A是线段PD的中点,E是线段AB的中点;如图(2),沿AB把平面PAB折起,使二面角P-CD-B成45°角.
(1)求证PA⊥平面ABCD;
(2)求平面PEC和平面PAD所成的锐二面角的大小.
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

如图;在直角梯形ABCD中,AB⊥AD,AD=DC=2,AB=6,动点P在以点C为圆心且与直线BD相切的圆上运动,设
AP
=m
AD
+n
AB
(m,n∈R)
,则m+n的取值范围是
[1,
5
3
]
[1,
5
3
]

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在等腰梯形ABCD中,AB=6,CD=4,梯形ABCD的面积是5
7
.若分别以A、B为椭圆E的左右焦点,且C、D在椭圆E上.
(1)求椭圆E的标准方程;
(2)设椭圆E的上顶点为M,直线l交椭圆于P、Q两点,那么是否存在直线l,使B点恰为△PQM的垂心?如果存在,求出直线l的方程;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图1-2-7所示,在梯形ABCD中,AB=10,CD=6,AD=BC=4,动点P从B点开始沿着折线BC、CD、DA前进至A,若P点运动的路程为x,△PAB的面积为y.

                图1-2-7

(1)写出y=f(x)的解析式,并求出函数的定义域;

(2)画出函数的图象并求出函数的值域.

查看答案和解析>>

同步练习册答案