精英家教网 > 高中数学 > 题目详情

【题目】)已知命题p:“x∈[1,2],x2﹣a≥0”,命题q:“x∈R,x2+2ax+2﹣a=0”.若命题“p且q”是真命题,则实数a的取值范围为(
A.﹣2≤a≤1
B.a≤﹣2或1≤a≤2
C.a≥1
D.a≤﹣2或 a=1

【答案】D
【解析】解:x∈[1,2],x2﹣a≥0; 即x∈[1,2],a≤x2
x2在[1,2]上的最小值为1;
∴a≤1;
即命题p:a≤1;
x∈R,x2+2ax+2﹣a=0;
∴方程x2+2ax+2﹣a=0有解;
∴△=4a2﹣4(2﹣a)≥0,解得:a≤﹣2,或a≥1;
即命题q:a≤﹣2,或a≥1;
若“p且q”是真命题,则p,q都为真命题;

∴a≤﹣2,或a=1.
故选D.
【考点精析】本题主要考查了复合命题的真假的相关知识点,需要掌握“或”、 “且”、 “非”的真值判断:“非p”形式复合命题的真假与F的真假相反;“p且q”形式复合命题当P与q同为真时为真,其他情况时为假;“p或q”形式复合命题当p与q同为假时为假,其他情况时为真才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABC﹣A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5. (Ⅰ)求证:AA1⊥平面ABC;
(Ⅱ)求证二面角A1﹣BC1﹣B1的余弦值;
(Ⅲ)证明:在线段BC1上存在点D,使得AD⊥A1B,并求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△ABC的内角A,B,C的内角对边分别为a,b,c,满足(a+b+c)(a﹣b+c)=ac. (Ⅰ)求B.
(Ⅱ)若sinAsinC= ,求C.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 与y轴交于B1、B2两点,F1为椭圆C的左焦点,且△F1B1B2是腰长为 的等腰直角三角形.
(1)求椭圆C的方程;
(2)设直线x=my+1与椭圆C交于P、Q两点,点P关于x轴的对称点为P1(P1与Q不重合),则直线P1Q与x轴是否交于一个定点?若是,请写出该定点坐标,并证明你的结论;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 上有最大值1和最小值0,设 .
(1)求 的值;
(2)若不等式 上有解,求实数 的取值范围;
(3)若方程 ( 为自然对数的底数)有三个不同的实数解,求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a∈R,若 在区间(0,1)上只有一个极值点,则a的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 ,下列图象中能表示定义域和值域都是 的函数的是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 ,且
(1)当 时,解不等式
(2) 恒成立,求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】长方体ABCDA1B1C1D1中,ABBC=2,D1D=3,点MB1C1的中点,点NAB的中点.建立如图所示的空间直角坐标系.

(1)写出点DNM的坐标;
(2)求线段MDMN的长度.

查看答案和解析>>

同步练习册答案