精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱柱ABC﹣A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5. (Ⅰ)求证:AA1⊥平面ABC;
(Ⅱ)求证二面角A1﹣BC1﹣B1的余弦值;
(Ⅲ)证明:在线段BC1上存在点D,使得AD⊥A1B,并求 的值.

【答案】证明:(I)∵AA1C1C是正方形,∴AA1⊥AC. 又∵平面ABC⊥平面AA1C1C,平面ABC∩平面AA1C1C=AC,
∴AA1⊥平面ABC.
(II)解:由AC=4,BC=5,AB=3.
∴AC2+AB2=BC2 , ∴AB⊥AC.
建立如图所示的空间直角坐标系,则A1(0,0,4),B(0,3,0),B1(0,3,4),C1(4,0,4),

设平面A1BC1的法向量为 ,平面B1BC1的法向量为 =(x2 , y2 , z2).
,令y1=4,解得x1=0,z1=3,∴
,令x2=3,解得y2=4,z2=0,∴
= = =
∴二面角A1﹣BC1﹣B1的余弦值为
(III)设点D的竖坐标为t,(0<t<4),在平面BCC1B1中作DE⊥BC于E,可得D
= =(0,3,﹣4),
,∴
,解得t=


【解析】(I)利用AA1C1C是正方形,可得AA1⊥AC,再利用面面垂直的性质即可证明;(II)利用勾股定理的逆定理可得AB⊥AC.通过建立空间直角坐标系,利用两个平面的法向量的夹角即可得到二面角;(III)设点D的竖坐标为t,(0<t<4),在平面BCC1B1中作DE⊥BC于E,可得D ,利用向量垂直于数量积得关系即可得出.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色,且三个房间颜色各不相同.已知三个房间的粉刷面积(单位:m2)分别为x,y,z,,且xyz,三种颜色涂料的粉刷费用(单位:元/m2)分别为a,b,c,且abc,在不同的方案中,最低的总费用(单位:元)是()
A.ax+by+cz
B.az+by+cx
C.ay+bz+cx
D.ay+bx+cz

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}满足a1=1,a2=2,an+2=2an+1﹣an+2. (Ⅰ)设bn=an+1﹣an , 证明{bn}是等差数列;
(Ⅱ)求{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个棱锥的三视图如图,则该棱锥的全面积(单位:cm2)为(
A.48+12
B.48+24
C.36+12
D.36+24

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在[﹣3,3]上的增函数f(x)满足f(﹣x)=﹣f(x),且f(m+1)+f(2m﹣1)>0,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】二次函数y=ax2+x+1(a>0)的图象与x轴两个交点的横坐标分别为x1 , x2
(1)证明:(1+x1)(1+x2)=1;
(2)证明:x1<﹣1,x2<﹣1;
(3)若x1 , x2满足不等式|lg |≤1,试求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中值域为(0,+∞)的是( )
A.
B.y=x+ ({x>0})
C.y=
D.y=x﹣ (x≥1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy内,动点P到定点F(﹣1,0)的距离与P到定直线x=﹣4的距离之比为
(1)求动点P的轨迹C的方程;
(2)设点A、B是轨迹C上两个动点,直线OA、OB与轨迹C的另一交点分别为A1、B1 , 且直线OA、OB的斜率之积等于- ,问四边形ABA1B1的面积S是否为定值?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】)已知命题p:“x∈[1,2],x2﹣a≥0”,命题q:“x∈R,x2+2ax+2﹣a=0”.若命题“p且q”是真命题,则实数a的取值范围为(
A.﹣2≤a≤1
B.a≤﹣2或1≤a≤2
C.a≥1
D.a≤﹣2或 a=1

查看答案和解析>>

同步练习册答案