精英家教网 > 高中数学 > 题目详情
如图,正三角形ABC的边长为2,D,E,F分别在三边AB,BC和CA上,且D为AB的中点,.
(1)当时,求的大小;
(2)求的面积S的最小值及使得S取最小值时的值.
(1)θ=60°;(2)当θ=45°时,S取最小值.

试题分析:本题主要考查正弦定理、直角三角形中正切的定义、两角和的正弦公式、倍角公式、三角形面积公式等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,在中,,①,而在中,利用正弦定理,用表示DE,在中,利用正弦定理,用表示DF,代入到①式中,再利用两角和的正弦公式展开,解出,利用特殊角的三角函数值求角;第二问,将第一问得到的DF和DE代入到三角形面积公式中,利用两角和的正弦公式和倍角公式化简表达式,利用正弦函数的有界性确定S的最小值.
在△BDE中,由正弦定理得
在△ADF中,由正弦定理得.   4分
由tan∠DEF=,得,整理得
所以θ=60°.             6分
(2)S=DE·DF=
.  10分
当θ=45°时,S取最小值.     12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图所示,点O为做简谐运动的物体的平衡位置,取向右的方向为物体位移的正方向,若已知振幅为3 cm,周期为3 s,且物体向右运动到A点(距平衡位置最远处)开始计时.(1)求物体离开平衡位置的位移x(cm)和时间t(s)之间的函数关系式;(2)求该物体在t=5 s时的位置.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知中,的对边分别为.
(1)判断△的形状,并求的取值范围;
(2)如图,三角形的顶点分别在上运动,,若直线直线 ,且相交于点,求间距离的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)求的最小正周期;
(2)若,求在区间上的值域.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

根据下列条件解三角形,两解的是(   )
A.b = 10,A = 45°,B = 70°
B.a = 60,c = 48,B = 100°
C.a = 14,b = 16,A = 45°
D.a = 7,b = 5,A = 80°

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,两座建筑物AB,CD的高度分别是9m和15m,从建筑物AB的顶部看建筑物CD的张角,求建筑物AB和CD底部之间的距离BD。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知的三条边的长,对任意实数有  (  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

中,,则等于(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

为测量一座塔的高度,在一座与塔相距20米的楼的楼顶处测得塔顶的仰角为,测得塔基的俯角为,那么塔的高度是(   )米.
A.B.C.D.

查看答案和解析>>

同步练习册答案