精英家教网 > 高中数学 > 题目详情

观察下面一组组合数等式:



…………
(1)由以上规律,请写出第个等式并证明;
(2)随机变量,求证:.

(1) ;(2)详见解析.

解析试题分析:(1)观察等式规律,易得,有组合数计算公式易证出.(2)随机变量,求证:,显然这是一个二项分布,根据二项分布得,利用(1)的结论,及二项式定理,即可证明.
试题解析:(1),证略.
(2)由二项分布得:

.
考点:归纳推理,二项分布与数学期望.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.
(1)求开始第4次发球时,甲、乙的比分为1比2的概率;
(2)表示开始第4次发球时乙的得分,求的期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

第16届亚运会于2010年11月12日在广州举办,运动会期间来自广州大学和中山大学的共计6名大学生志愿者将被随机平均分配到跳水、篮球、体操这三个比赛场馆服务,且跳水场馆至少有一名广州大学志愿者的概率是.
(1)求6名志愿者中来自广州大学、中山大学的各有几人?
(2)设随机变量X为在体操比赛场馆服务的广州大学志愿者的人数,求X的分布列及均值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

A、B两个投资项目的利润率分别为随机变量X1和X2,根据市场分析,X1和X2的分布列分别为

X1
5%
10%
P
0.8
0.2
 
X2
2%
8%
12%
P
0.2
0.5
0.3
(1)在A,B两个项目上各投资100万元,Y1和Y2分别表示投资项目A和B所获得的利润,求方差V(Y1)、V(Y2);
(2)将x(0≤x≤100)万元投资A项目,100-x万元投资B项目,f(x)表示投资A项目所得利润的方差与投资B项目所得利润的方差的和.求f(x)的最小值,并指出x为何值时,f(x)取到最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设甲、乙、丙三人每次射击命中目标的概率分别为0.7、0.6和0.5.三人各向目标射击一次,求至少有一人命中目标的概率及恰有两人命中目标的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某校组织一次冬令营活动,有8名同学参加,其中有5名男同学,3名女同学,为了活动的需要,要从这8名同学中随机抽取3名同学去执行一项特殊任务,记其中有X名男同学.
(1)求X的分布列;
(2)求去执行任务的同学中有男有女的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设连续掷两次骰子得到的点数分别为m、n,令平面向量a=(m,n),b=(1,-3).
(1) 求使得事件“ab”发生的概率;
(2) 求使得事件“|a|≤|b|”发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

甲、乙、丙三个车床加工的零件分别为350个,700个,1050个,现用分层抽样的方法随机抽取6个零件进行检验.
(1)从抽取的6个零件中任意取出2个,已知这两个零件都不是甲车床加工的,求其中至少有一个是乙车床加工的零件;
(2)从抽取的6个零件中任意取出3个,记其中是乙车床加工的件数为X,求X的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了倡导健康、低碳、绿色的生活理念,某市建立了公共自行车服务系统鼓励市民租用公共自行车出行,公共自行车按每车每次的租用时间进行收费,具体收费标准如下:
①租用时间不超过1小时,免费;
②租用时间为1小时以上且不超过2小时,收费1元;
③租用时间为2小时以上且不超过3小时,收费2元;
④租用时间超过3小时的时段,按每小时2元收费(不足1小时的部分按1小时计算)
已知甲、乙两人独立出行,各租用公共自行车一次,两人租车时间都不会超过3小时,设甲、乙租用时间不超过1小时的概率分别是0.4和0.5;租用时间为1小时以上且不超过2小时的概率分别是0.5和0.3.
(1)求甲、乙两人所付租车费相同的概率;
(2)设甲、乙两人所付租车费之和为随机变量,求的分布列和数学期望E.

查看答案和解析>>

同步练习册答案