精英家教网 > 高中数学 > 题目详情
18.已知函数$f(x)=\sqrt{x-1}$
(1)求函数f(x)的定义域;
(2)判断函数f(x)在定义域上的单调性,并用单调性的定义证明.

分析 (1)根据二次根式的被开方数大于或等于0,求出f(x)的定义域;
(2)利用单调性的定义即可证明函数f(x)在定义域上为增函数.

解答 解:(1)要使函数$f(x)=\sqrt{x-1}$有意义,需使x≥1,
所以函数$f(x)=\sqrt{x-1}$的定义域为[1,+∞);
(2)函数$f(x)=\sqrt{x-1}$在定义域[1,+∞)上为增函数,
证明:任取x1,x2∈[1,+∞),且△x=x2-x1>0,
则$△y=f({x_2})-f({x_1})=\sqrt{{x_2}-1}-\sqrt{{x_1}-1}$
=$\frac{{(\sqrt{{x_2}-1}-\sqrt{{x_1}-1})(\sqrt{{x_2}-1}+\sqrt{{x_1}-1})}}{{\sqrt{{x_2}-1}+\sqrt{{x_1}-1}}}$
=$\frac{{(x}_{2}-1)-{(x}_{1}-1)}{\sqrt{{x}_{2}-1}+\sqrt{{x}_{1}-1}}$
=$\frac{{x}_{2}{-x}_{1}}{\sqrt{{x}_{2}-1}+\sqrt{{x}_{1}-1}}$;
因为x2-x1>0且$\sqrt{{x_2}-1}+\sqrt{{x_1}-1}$>0,
所以△y=f(x2)-f(x1)>0,
所以函数f(x)在[1,+∞)上是增函数.

点评 本题考查了求函数的定义域以及利用定义证明函数的单调性问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.为了调查患慢性气管炎是否与吸烟有关,调查了100名50岁以下的人,调查结果如下表:
患慢性气管炎未患慢性气管炎合计
吸烟202040
不吸烟55560
合计2575100
根据列联表数据,有99.9%的把握(填写相应的百分比)认为患慢性气管炎与吸烟有关.
附:
P(K2≥k)  0.0500.0100.001
k   3.8416.63510.828
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求下列函数的导数
(1)y=(x+1)(x+2)(x+3)
(2)$y=\frac{2sinx}{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图是一个实物图形,则它的侧视图大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.数列{an}的前n项和为Sn,若a1=-1,an=3Sn(n>1),则S10=(  )
A.$-\frac{1}{512}$B.-$\frac{341}{512}$C.$\frac{1}{1024}$D.$\frac{1}{2048}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩(∁NB)={1,5,7};A∪B的真子集有255个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知等差数列{an}的前n项和为Sn(n∈N*),且an=2n+λ,若数列{Sn}为递增数列,则实数λ的取值范围为(  )
A.(-4,+∞)B.[-4,+∞)C.(-3,+∞)D.[-3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列命题中的假命题是(  )
A.存在x∈R,lgx=0B.存在x∈R,tanx=1C.任意的x∈R,x3>0D.任意的x∈R,2x>0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.某单位有老年人27人,中年人54人,青年人81人,为了调查他们的身体状况,从中抽取样本容量为36的样本,最适合的抽取样本的方法是(  )
A.简单随机抽样B.系统抽样C.分层抽样D.抽签法

查看答案和解析>>

同步练习册答案