精英家教网 > 高中数学 > 题目详情
对任意实数a,b,定义:F(a,b)=
1
2
(a+b-|a-b|)
,如果函数f(x)=x2,g(x)=
5
2
x+
3
2
,h(x)=-x+2,那么函数G(x)=F(F(f(x),g(x)),h(x))的最大值等于
 
分析:根据“对任意实数a,b,定义:F(a,b)=
1
2
(a+b-|a-b|)
“的意思是两个函数的函数值进行比较,较大的舍去留下较小的函数值.得到得到G(x)图象,结合图象即可求出函数的最大值.
解答:精英家教网解:“对任意实数a,b,定义:F(a,b)=
1
2
(a+b-|a-b|)
“的意思是两个函数的函数值进行比较,
较大的舍去留下较小的函数值.
故G(x)的最大值等于1.
点评:本题主要考查了函数的最值及其几何意义,以及数形结合的数学思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x2+ax+b(a,b为实常数)的零点与函数g(x)=2x2+4x-30的零点相同,数列{an},{bn}定义为:a1=
1
2
,2an+1=f(an)+15,bn=
1
2+an
(n∈N*).
(1)求实数a,b的值;
(2)若将数列{bn}的前n项和与数列{bn}的前n项积分别记为Sn,Tn证明:对任意正整数n,2n+1Tn+Sn为定值;
(3)证明:对任意正整数n,都有2[1-(
4
5
n]≤Sn<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+ax+b(a,b为实常数),数列{an},{bn}定义为:a1=
1
2
,2an+1=f(an)+15,bn=
1
2+an
(n∈N*).已知不等式|f(x)≤2x2+4x-30|对任意实数x均成立.
(1)求实数a,b的值;
(2)若将数列{bn}的前n项和与乘积分别记为Sn和Tn,证明:对任意正整数n,2n+1Tn+Sn为定值;
(3)证明:对任意正整数n,都有2[1-(
4
5
n]≤Sn<2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x2+ax+b(a,b为实常数)的零点与函数g(x)=2x2+4x-30的零点相同,数列{an},{bn}定义为:a1=数学公式,2an+1=f(an)+15,bn=数学公式(n∈N*).
(1)求实数a,b的值;
(2)若将数列{bn}的前n项和与数列{bn}的前n项积分别记为Sn,Tn证明:对任意正整数n,2n+1Tn+Sn为定值;
(3)证明:对任意正整数n,都有2[1-(数学公式n]≤Sn<2.

查看答案和解析>>

科目:高中数学 来源:2011年广东省华南师大附中高三临门一脚综合测试数学试卷(理科)(解析版) 题型:解答题

设函数f(x)=x2+ax+b(a,b为实常数),数列{an},{bn}定义为:a1=,2an+1=f(an)+15,bn=(n∈N*).已知不等式|f(x)≤2x2+4x-30|对任意实数x均成立.
(1)求实数a,b的值;
(2)若将数列{bn}的前n项和与乘积分别记为Sn和Tn,证明:对任意正整数n,2n+1Tn+Sn为定值;
(3)证明:对任意正整数n,都有2[1-(n]≤Sn<2.

查看答案和解析>>

科目:高中数学 来源:2009年上海市浦东新区建平中学高考数学三模试卷(理科)(解析版) 题型:解答题

已知点M(0,-1),直线l:y=mx+1与曲线C:ax2+y2=2(m,a∈R)交于A、B两点.
(1)当m=0时,有,求曲线C的方程;
(2)当实数a为何值时,对任意m∈R,都有为定值T?指出T的值;
(3)设动点P满足,当a=-2,m变化时,求点P的轨迹方程;
(4)是否存在常数M,使得对于任意的a∈(0,1),m∈R,都有恒成立?如果存在,求出的M得最小值;如果不存在,说明理由.

查看答案和解析>>

同步练习册答案