精英家教网 > 高中数学 > 题目详情
10.若集合A={x|x2+5x+4<0},集合B={x|x<-2},则A∩(∁RB)等于(  )
A.(-2,-1)B.[-2,4)C.[-2,-1)D.

分析 求出A中不等式的解集确定出A,找出A与B补集的交集即可.

解答 解:由A中不等式变形得:(x+1)(x+4)<0,
解得:-4<x<-1,即A=(-4,-1),
∵B=(-∞,-2),
∴∁RB=[-2,+∞),
则A∩(∁RB)=[-2,-1),
故选:C.

点评 此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知集合A={x|x2-6x+5≤0},B={x|x<a+1}.若A∩B≠∅,则a的取值范围为(  )
A.(0,+∞)B.[0,+∞)C.(4,+∞)D.[4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知实数x,y满足$\left\{\begin{array}{l}y≤1\\ y≥2x-1\\ x+y≥-4.\end{array}\right.$如果目标函数z=y-x的最小值为(  )
A.-2B.-4C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知实数x,y满足$\left\{\begin{array}{l}y≤1\\ y≥2x-1\\ x+y≥m\end{array}\right.$如果目标函数z=y-x的最小值为-2,则实数m等于(  )
A.0B.-2C.-4D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图四棱锥E-ABCD中,四边形ABCD为平行四边形,△BCE为等边三角形,△ABE是以∠A为直角的等腰直角三角形,且AC=BC.
(Ⅰ)证明:平面ABE⊥平面BCE;
(Ⅱ)求二面角A-DE-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.要得到函数y=sin2x的图象,只要将函数y=sin(2x+$\frac{π}{3}$)的图象(  )
A.向左平移$\frac{π}{6}$单位即可B.向右平移$\frac{π}{6}$单位即可
C.向右平移$\frac{π}{3}$单位即可D.向左平移$\frac{π}{3}$单位即可

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.甲、乙两人射击比赛,两人平的概率是$\frac{1}{2}$,甲获胜的概率是$\frac{1}{3}$,则甲不输的概率为(  )
A.$\frac{2}{5}$B.$\frac{5}{6}$C.$\frac{1}{6}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某市电视台为了宣传,举办问答活动,随机对该市15至65岁的人群进行抽样,频率分布直方图及回答问题统计结果如表所示:
组号分组回答正确
的人数
回答正确的人数
占本组的概率
第1组[15,25)50.5
第2组[25,35)a0.9
第3组[35,45)27x
第4组[45,55)b0.36
第5组[55,65)3y
(1)分别求出a,b,x,y的值;
(2)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,则第2,3,4组每组应各抽取多少人?
(3)在(2)的前提下,电视台决定在所抽取的6人中随机抽取3人颁发幸运奖,求:所抽取的人中第3组至少有1人获得幸运奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知抛物线x2=2py(p>0)的焦点F是椭圆$\frac{y^2}{a^2}+\frac{x^2}{b^2}=1({a>b>0})$的一个焦点,若P,Q是椭圆与抛物线的公共点,且直线PQ经过焦点F,则该椭圆的离心率为$\sqrt{2}-1$.

查看答案和解析>>

同步练习册答案