精英家教网 > 高中数学 > 题目详情
已知函数
(Ⅰ)当a=1时,若曲线y=f(x)在点M (x0,f(x0))处的切线与曲线y=g(x)在点P (x0, g(x0))处的切线平行,求实数x0的值;
(II)若(0,e],都有f(x)≥g(x)+,求实数a的取值范围.
(Ⅰ) ;(II) .

试题分析:(Ⅰ) 将两切线平行,转化为两直线的斜率相等,借助导数的几何意义建立等量关系;(II)该恒成立问题可转化为最值问题.即只需找到上的最小值,使它的最小值大于或等于0即可.
试题解析:(I)当因为,                         2分
若函数在点处的切线与函数在点
处的切线平行,
所以,解得         
此时在点处的切线为
在点处的切线为
所以                                                 4分
(II)若,都有

只要上的最小值大于等于0
                                             6分
的变化情况如下表:






0



极大值

                                                                                                                                              8分
时,函数上单调递减,为最小值
所以,得
所以                                               10分
时,函数上单调递减,在上单调递增 ,
为最小值,所以,得
所以                                           12分
综上,                                            13分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题12分)设函数
(1)求的周期和对称中心;
(2)求上值域.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数为常数).
(1)当时,求的单调递减区间;
(2)若,且对任意的恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知处取得极值。
(Ⅰ)证明:
(Ⅱ)是否存在实数,使得对任意?若存在,求的所有值;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数(Ⅰ)若函数上单调递减,在区间单调递增,求的值;
(Ⅱ)若函数上有两个不同的极值点,求的取值范围;
(Ⅲ)若方程有且只有三个不同的实根,求的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)当时,函数取得极大值,求实数的值;
(Ⅱ)已知结论:若函数在区间内存在导数,则存在
,使得. 试用这个结论证明:若函数
(其中),则对任意,都有
(Ⅲ)已知正数满足,求证:对任意的实数,若时,都
.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知 函数
(1)已知任意三次函数的图像为中心对称图形,若本题中的函数图像以为对称中心,求实数的值
(2)若,求函数在闭区间上的最小值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数处取得极值.
(1)求的值;(2)求的单调区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知,则实数的值等于          

查看答案和解析>>

同步练习册答案