精英家教网 > 高中数学 > 题目详情
已知函数处取得极值.
(1)求的值;(2)求的单调区间.
(1)
(2)的单调增区间为的单调减区间为.

试题分析:(1)由已知
因为处取得极值,所以1和2是方程的两根

(2)由(1)可得 
时,是增加的;
时,是减少的。
所以,的单调增区间为的单调减区间为.
点评:中档题,本题属于导数的基本应用问题。在给定区间,导函数值非负,函数为增函数;导函数值非正,函数为减函数。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数=,=,若曲线和曲线都过点P(0,2),且在点P处有相同的切线.
(Ⅰ)求,,,的值;
(Ⅱ)若≥-2时,,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)当a=1时,若曲线y=f(x)在点M (x0,f(x0))处的切线与曲线y=g(x)在点P (x0, g(x0))处的切线平行,求实数x0的值;
(II)若(0,e],都有f(x)≥g(x)+,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

, 已知函数 
(Ⅰ) 证明在区间(-1,1)内单调递减, 在区间(1, + ∞)内单调递增;
(Ⅱ) 设曲线在点处的切线相互平行, 且 证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数,其中为实数.
(1)若上是单调减函数,且上有最小值,求的取值范围;
(2)若上是单调增函数,试求的零点个数,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)若处取得极值,求的极大值;
(2)若在区间的图像在图像的上方(没有公共点),求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)当时,求曲线在点处的切线方程;
(Ⅱ)求函数的极值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,则等于(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,曲线在点处切线的倾斜角的取值范围为,则点到曲线对称轴距离的取值范围是(    )
A.B.C.D.

查看答案和解析>>

同步练习册答案