精英家教网 > 高中数学 > 题目详情
已知f(x)=-4x2+4ax-4a-a2在区间[0,1]内有最大值-5,求a的值及函数表达式f(x).
分析:先将二次函数配方得:-4(x-
a
2
)
2
-4a,下面对对称轴与所给区间的位置关系进行讨论,对每一种情况求出相应的最大值,再利用题中条件:“有最大值-5”得方程即可求得a值,从而进一步求得函数表达式f(x).
解答:解∵f(x)=-4(x-
a
2
)
2
-4a,此抛物线顶点为(
a
2
,-4a)

a
2
≥1,即a≥2时,f(x)取最大值-4-a2.令-4-a2=-5,得a2=1,a=±1<2(舍去).
当0<
a
2
<1,即0<a<2时,x=
a
2
时,f(x)取最大值为-4a,令-4a=-5,得a=
5
4
∈(0,2).
a
2
≤0,即a≤0时,f(x)在[0,1]内递减,∴x=0时,f(x)取最大值为-4a-a2
令-4a-a2=-5,得a2+4a2-5=0,解得a=-5,或a=1,其中-5∈(-∞,0].
综上所述,a=
5
4
或a=-5时,f(x)在[0,1]内有最大值-5.
∴f(x)=-4x2+5x-
25
16
或f(x)=-4x2-20x-5.
点评:本小题主要考查函数单调性的应用、二次函数的性质、函数的最值及其几何意义等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=4x+ax2-
2
3
x3(x∈R)
在区间[-1,1]上是增函数.
(Ⅰ)求实数a的值组成的集合A;
(Ⅱ)设关于x的方程f(x)=2x+
1
3
x3
的两个非零实根为x1、x2.试问:是否存在实数m,使得不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=4x+ax2-
23
x3(x∈R)
在区间[-1,1]上是增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
4x-a(x+1)    (x<1)
logax         (x≥1)
的单调递增区间为(-∞,+∞),则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=4x-2x+1+6,那么f(x)的最小值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宁德模拟)已知f(x)=4x+1,g(x)=4-x.若偶函数h(x)满足h(x)=mf(x)+ng(x)(其中m,n为常数),且最小值为1,则m+n=
2
3
2
3

查看答案和解析>>

同步练习册答案