12£®ÒÑÖªÍÖÔ²$C£º\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨{a£¾b£¾0}£©$µÄ½¹¾àΪ$2\sqrt{2}$£¬F1£¬F2ΪÆä×óÓÒ½¹µã£¬MΪÍÖÔ²ÉÏÒ»µã£¬ÇÒ¡ÏF1MF2=60¡ã£¬${S_{¡÷{F_1}M{F_2}}}=\frac{{2\sqrt{3}}}{3}$
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÉèÖ±Ïßl£ºy=kx+mÓëÍÖÔ²CÏཻÓÚA¡¢BÁ½µã£¬ÒÔÏß¶ÎOA£¬OBΪÁÚ±ß×÷ƽÐÐËıßÐÎOAPB£¬ÆäÖж¥µãPÔÚÍÖÔ²CÉÏ£¬OÎª×ø±êÔ­µã£¬ÇóÖ¤£ºÆ½ÐÐËıßÐÎOAPBµÄÃæ»ýΪ¶¨Öµ£®

·ÖÎö £¨1£©ÓÉÌâÒâ¿ÉÖª£º$c=\sqrt{2}$£¬Ôò£¬$\left\{{\begin{array}{l}{x+y=2a}\\{{x^2}+{y^2}-8=2xycos{{60}¡ã}}\\{\frac{1}{2}xysin{{60}¡ã}=\frac{{2\sqrt{3}}}{3}}\end{array}}\right.$£¬¼´¿ÉÇóµÃaµÄÖµ£¬Ôòb2=a2-c2=2£¬¼´¿ÉÇóµÃÍÖÔ²CµÄ·½³Ì£»
£¨2£©½«Ö±ÏßlµÄ·½³Ì´úÈëÍÖÔ²·½³Ì£¬ÓÉÏòÁ¿µÄ×ø±êÔËË㣬¼´¿ÉÇóµÃPµã×ø±ê£¬ÀûÓÃΤ´ï¶¨Àí£¬ÏÒ³¤¹«Ê½¼´¿É¼°µãµ½Ö±ÏߵľàÀ빫ʽÇóµÃƽÐÐËıßÐÎOAPBµÄÃæ»ýS=$\sqrt{6}$£¬¼´¿ÉÇó֤ƽÐÐËıßÐÎOAPBµÄÃæ»ýΪ¶¨Öµ£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉÖª£¬2c=$2\sqrt{2}$£¬¼´$c=\sqrt{2}$£¬Éè|MF1|=x£¬|MF2|=y£¬
ÔÚ¡÷F1MF2ÖУ¬$\left\{{\begin{array}{l}{x+y=2a}\\{{x^2}+{y^2}-8=2xycos{{60}¡ã}}\\{\frac{1}{2}xysin{{60}¡ã}=\frac{{2\sqrt{3}}}{3}}\end{array}}\right.$£¬¡­£¨2·Ö£©
½âµÃ£ºa2=4£¬¡­£¨4·Ö£©
¡àb2=a2-c2=2
¡àÍÖÔ²·½³ÌΪ$\frac{x^2}{4}+\frac{y^2}{2}=1$£®¡­£¨5·Ö£©
£¨2£©Ö¤Ã÷£ºÓÉÖ±Ïßl£ºy=kx+mÓëÍÖÔ²CÏཻÓÚA¡¢BÁ½µã£¬ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
ÁªÁ¢$\left\{{\begin{array}{l}{y=kx+m}\\{\frac{x^2}{4}+\frac{y^2}{2}=1}\end{array}}\right.$£¬Ïûy¿ÉµÃ£¨2k2+1£©x2+4kmx+2m2-4=0£¬¡­£¨6·Ö£©
¡÷=£¨4km£©2-4£¨2k2+1£©£¨2m2-4£©=8£¨4k2+2-m2£©£¾0£¬Ôòm2£¼4k2+2£¬
Ôò${x_1}+{x_2}=\frac{-4km}{{2{k^2}+1}}£¬{x_1}{x_2}=\frac{{2{m^2}-4}}{{2{k^2}+1}}$£¬¡­£¨8·Ö£©
${y_1}+{y_2}=k£¨{x_1}+{x_2}£©+2m=\frac{{-4{k^2}m}}{{2{k^2}+1}}+2m=\frac{2m}{{2{k^2}+1}}$£¬
¶ø$\overrightarrow{OP}=\overrightarrow{OA}+\overrightarrow{OB}=£¨{x_1}+{x_2}£¬{y_1}+{y_2}£©$£¬
¡à$P£¨\frac{-4km}{{2{k^2}+1}}£¬\frac{2m}{{2{k^2}+1}}£©$¡­£¨9·Ö£©
¡ßµãPÔÚÍÖÔ²ÉÏ£¬
´úÈëÍÖÔ²·½³Ì£º$\frac{1}{4}{£¨\frac{-4km}{{2{k^2}+1}}{£©^2}+\frac{1}{2}£¨\frac{2m}{{2{k^2}+1}}£©^2}=1$£¬
ÕûÀí¿ÉµÃ£º${m^2}={k^2}+\frac{1}{2}$£¬Âú×ã¡÷£¾0£¬¡­£¨10·Ö£©
ÓÖ$|AB|=\sqrt{1+{k^2}}|{x_1}-{x_2}|=\sqrt{1+{k^2}}\sqrt{{{£¨{x_1}+{x_2}£©}^2}-4{x_1}{x_2}}$=$\sqrt{1+{k^2}}\sqrt{£¨\frac{-4km}{{2{k^2}+1}}{£©^2}-4\frac{{2{m^2}-4}}{{2{k^2}+1}}}=\sqrt{1+{k^2}}\frac{{\sqrt{8£¨4{k^2}+2-{m^2}£©}}}{{2{k^2}+1}}=\frac{{2\sqrt{3}\sqrt{1+{k^2}}}}{{\sqrt{2{k^2}+1}}}$¡­£¨11·Ö£©
ÉèOµ½Ö±ÏßABµÄ¾àÀëΪd£¬Ôò$d=\frac{|m|}{{\sqrt{{k^2}+1}}}=\frac{{\sqrt{{k^2}+\frac{1}{2}}}}{{\sqrt{{k^2}+1}}}=\frac{{\sqrt{2}}}{2}•\frac{{\sqrt{2{k^2}+1}}}{{\sqrt{{k^2}+1}}}$£¬¡­£¨12·Ö£©
¡à${S_{ƽÐÐËıßÐÎOAPB}}=|AB|•d=\frac{{2\sqrt{3}\sqrt{1+{k^2}}}}{{\sqrt{2{k^2}+1}}}•\frac{{\sqrt{2}}}{2}•\frac{{\sqrt{2{k^2}+1}}}{{\sqrt{{k^2}+1}}}=\sqrt{6}$£¬
ƽÐÐËıßÐÎOAPBµÄÃæ»ýΪ¶¨Öµ£®¡­£¨13·Ö£©

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³Ì£¬¿¼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²éµãµ½Ö±ÏߵľàÀ빫ʽ£¬Î¤´ï¶¨Àí£¬ÏÒ³¤¹«Ê½£¬ÓàÏÒ¶¨Àí¼°ÏòÁ¿µÄ×ø±êÔËË㣬¿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÏÂÁÐË«ÇúÏßÖУ¬½¹µãÔÚxÖáÉÏÇÒ½¥½üÏß·½³ÌΪy=¡À$\frac{1}{4}$xµÄÊÇ£¨¡¡¡¡£©
A£®x2-$\frac{{y}^{2}}{16}$=1B£®$\frac{{x}^{2}}{16}$-y2=1C£®$\frac{{y}^{2}}{16}$-x2=1D£®y2-$\frac{{x}^{2}}{16}$=1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÒÑÖª¼¯ºÏA={-3£¬-2£¬-1£¬0£¬1£¬2}£¬B={x|x2¡Ü3}£¬ÔòA¡ÉB=£®£¨¡¡¡¡£©
A£®{0£¬2}B£®{-1£¬0£¬1}C£®{-3£¬-2£¬-1£¬0£¬1£¬2}D£®[0£¬2]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÒÑÖªÇúÏß$f£¨x£©=lnx+\frac{x^2}{a}$Ôڵ㣨1£¬f£¨1£©£©´¦µÄÇÐÏßµÄÇãб½ÇΪ$\frac{3¦Ð}{4}$£¬ÔòaµÄֵΪ£¨¡¡¡¡£©
A£®1B£®-4C£®$-\frac{1}{2}$D£®-1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªf£¨x£©=£¨$\frac{x-1}{x+1}$£©2£¨x£¾1£©
£¨1£©Çóf£¨x£©µÄ·´º¯Êý¼°Æä¶¨ÒåÓò£»
£¨2£©Èô²»µÈʽ£¨1-$\sqrt{x}$£©f-1£¨x£©£¾a£¨a-$\sqrt{x}$£©¶ÔÇø¼äx¡Ê[$\frac{1}{4}$£¬$\frac{1}{2}$]ºã³ÉÁ¢£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®¡°m=5£¬n=4¡±ÊÇ¡°ÍÖÔ²$\frac{x^2}{m^2}+\frac{y^2}{n^2}=1$µÄÀëÐÄÂÊΪ$e=\frac{3}{5}$¡±µÄ£¨¡¡¡¡£©
A£®³ä·Ö²»±ØÒªÌõ¼þB£®±ØÒª²»³ä·ÖÌõ¼þ
C£®³äÒªÌõ¼þD£®¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®Èôº¯Êýf£¨x£©Âú×㣺¼¯ºÏA={f£¨n£©|n¡ÊN*}ÖÐÖÁÉÙ´æÔÚÈý¸ö²»Í¬µÄÊý¹¹³ÉµÈ²îÊýÁУ¬Ôò³Æº¯Êýf£¨x£©ÊǵȲîÔ´º¯Êý£®ÅжÏÏÂÁк¯Êý£º
¢Ùy=log2x£»
¢Úy=2x£»
¢Ûy=$\frac{1}{x}$ÖУ¬
ËùÓеĵȲîÔ´º¯ÊýµÄÐòºÅÊÇ£¨¡¡¡¡£©
A£®¢ÙB£®¢Ù¢ÚC£®¢Ú¢ÛD£®¢Ù¢Û

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®¼×´üÖÐÓÐ16¸ö°×ÇòºÍ17¸öºÚÇò£¬ÒÒ´üÖÐÓÐ31¸ö°×Çò£¬ÏÖÿ´ÎÈÎÒâ´Ó¼×´üÖÐÃþ³öÁ½¸öÇò£¬Èç¹ûÁ½Çòͬɫ£¬Ôò½«ÕâÁ½Çò·Å½ø±û´ü£¬²¢´ÓÒÒ´üÖÐÄóöÒ»°×Çò·Å»Ø¼×´ü£»Èç¹ûÁ½Çò²»Í¬É«£¬Ôò½«°×Çò·Å½ø±û´ü£¬²¢°ÑºÚÇò·Å»Ø¼×´ü£®ÄÇôÕâÑùÄà    ´Îºó£¬¼×´üÖÐֻʣһ¸öÇò£¬Õâ¸öÇòµÄÑÕÉ«ÊÇ      £¨¡¡¡¡£©
A£®16£¬ºÚÉ«B£®16£¬°×É«»òºÚÉ«C£®32£¬ºÚÉ«D£®32£¬°×É«

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÒÑÖª·ÇÁãÏòÁ¿$\overrightarrow a£¬\overrightarrow b$Âú×ã$|{\overrightarrow a}|=|{\overrightarrow b}|=|{\overrightarrow a+\overrightarrow b}|$£¬Ôò$\overrightarrow a$Óë$2\overrightarrow a-\overrightarrow b$¼Ð½ÇµÄÓàÏÒֵΪ$\frac{5\sqrt{7}}{14}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸