分析 (1)函数f(x)=$\overrightarrow a•\overrightarrow b$,平面向量数量积运算求解f(x)的解析式,化简,利用cosx=-$\frac{3}{5}$,求函数f(x)的值;
(2)根据三角函数的平移变换规律,平移后的图象关于原点对称,求解出m,n的值,可得6m+2n的值.
解答 解:由题意:函数f(x)=$\overrightarrow a•\overrightarrow b$=sin($\frac{x}{2}$+$\frac{π}{12}$)cos($\frac{x}{2}$+$\frac{π}{12}$)-$co{s}^{2}\frac{x}{2}$=$\frac{1}{2}$sin(x+$\frac{π}{6}$)-$\frac{1}{2}$-$\frac{1}{2}$cosx=$\frac{1}{2}$sinxcos$\frac{π}{6}$+$\frac{1}{2}$cosxsin$\frac{π}{6}$-$\frac{1}{2}$-$\frac{1}{2}$cosx=$\frac{\sqrt{3}}{4}$sinx-$\frac{1}{4}$cosx-$\frac{1}{2}$
(1)若cosx=-$\frac{3}{5}$,x∈$[\frac{π}{2},π]$,则sinx=$\sqrt{{1-cos}^{2}x}$=$\frac{4}{5}$,
则f(x)=$\frac{\sqrt{3}}{4}$sinx$-\frac{1}{4}$cosx-$\frac{1}{2}$=$\frac{\sqrt{3}}{4}×\frac{4}{5}$$+\frac{3}{5}×\frac{1}{4}$$-\frac{1}{2}$=$\frac{4\sqrt{3}-7}{20}$
(2)将函数f(x)=$\frac{\sqrt{3}}{4}$sinx-$\frac{1}{4}$cosx-$\frac{1}{2}$=$\frac{1}{2}$sin(x$-\frac{π}{6}$)$-\frac{1}{2}$的图象先向右平移m个单位,再向上平移n个单位,可得g(x)=$\frac{\sqrt{3}}{2}$sin(x-m$-\frac{π}{6}$)$-\frac{1}{2}$+n图象关于原点对称,
即-m-$\frac{π}{6}$=kπ,-$\frac{1}{2}+n$=0,(k∈Z)
∵0<m<π,n>0,
∴$m=\frac{5π}{6}$,n=$\frac{1}{2}$
那么:6m+2n=5π+1.
点评 本题考查了平面向量数量积运算,三角函数化简能力,以及三角函数的平移变换规律和性质的运用,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | p∧q | B. | p∨(¬q) | C. | (¬p)∧q | D. | (¬p)∧(¬q) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com