精英家教网 > 高中数学 > 题目详情
7.已知向量$\overrightarrow{a}$=(sin($\frac{x}{2}$+$\frac{π}{12}$),cos$\frac{x}{2}$),$\overrightarrow{b}$=(cos($\frac{x}{2}$+$\frac{π}{12}$),-cos$\frac{x}{2}$),x∈[$\frac{π}{2}$,π],设函数f(x)=$\overrightarrow a•\overrightarrow b$.
(1)若cosx=-$\frac{3}{5}$,求函数f(x)的值;
(2)将函数f(x)的图象先向右平移m个单位,再向上平移n个单位,使平移后的图象关于原点对称,若0<m<π,n>0,试求6m+2n的值.

分析 (1)函数f(x)=$\overrightarrow a•\overrightarrow b$,平面向量数量积运算求解f(x)的解析式,化简,利用cosx=-$\frac{3}{5}$,求函数f(x)的值;
(2)根据三角函数的平移变换规律,平移后的图象关于原点对称,求解出m,n的值,可得6m+2n的值.

解答 解:由题意:函数f(x)=$\overrightarrow a•\overrightarrow b$=sin($\frac{x}{2}$+$\frac{π}{12}$)cos($\frac{x}{2}$+$\frac{π}{12}$)-$co{s}^{2}\frac{x}{2}$=$\frac{1}{2}$sin(x+$\frac{π}{6}$)-$\frac{1}{2}$-$\frac{1}{2}$cosx=$\frac{1}{2}$sinxcos$\frac{π}{6}$+$\frac{1}{2}$cosxsin$\frac{π}{6}$-$\frac{1}{2}$-$\frac{1}{2}$cosx=$\frac{\sqrt{3}}{4}$sinx-$\frac{1}{4}$cosx-$\frac{1}{2}$
(1)若cosx=-$\frac{3}{5}$,x∈$[\frac{π}{2},π]$,则sinx=$\sqrt{{1-cos}^{2}x}$=$\frac{4}{5}$,
则f(x)=$\frac{\sqrt{3}}{4}$sinx$-\frac{1}{4}$cosx-$\frac{1}{2}$=$\frac{\sqrt{3}}{4}×\frac{4}{5}$$+\frac{3}{5}×\frac{1}{4}$$-\frac{1}{2}$=$\frac{4\sqrt{3}-7}{20}$
(2)将函数f(x)=$\frac{\sqrt{3}}{4}$sinx-$\frac{1}{4}$cosx-$\frac{1}{2}$=$\frac{1}{2}$sin(x$-\frac{π}{6}$)$-\frac{1}{2}$的图象先向右平移m个单位,再向上平移n个单位,可得g(x)=$\frac{\sqrt{3}}{2}$sin(x-m$-\frac{π}{6}$)$-\frac{1}{2}$+n图象关于原点对称,
 即-m-$\frac{π}{6}$=kπ,-$\frac{1}{2}+n$=0,(k∈Z)
∵0<m<π,n>0,
∴$m=\frac{5π}{6}$,n=$\frac{1}{2}$
那么:6m+2n=5π+1.

点评 本题考查了平面向量数量积运算,三角函数化简能力,以及三角函数的平移变换规律和性质的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知在△ABC中,内角A,B,C所对的边分别是a,b,c,且c=2,2sinA=$\sqrt{3}$acosC.
(1)求角C的大小;
(2)若2sin2A+sin(2B+C)=sinC,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=sin2x+asinx+3-a,x∈[0,π].
(1)求f(x)的最小值g(a);
(2)若f(x)在[0,π]上有零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某皮革公司旗下有许多手工足球作坊为其生产足球,公司打算生产两种不同类型的足球,一款叫“飞火流星”,另一款叫“团队之星”.每生产一个“飞火流星”足球,需要橡胶100g,皮革300g;每生产一个“团队之星”足球,需要橡胶50g,皮革400g.且一个“飞火流星”足球的利润为40元,一个“团队之星”足球的利润为30元.现旗下某作坊有橡胶材料2.5kg,皮革12kg.
(1)求该作坊可获得的最大利润;
(2)若公司规定各作坊有两种方案可供选择,方案一:作坊自行出售足球,则所获利润需上缴10%方案二:作坊选择由公司代售,则公司不分足球类型,一律按相同的价格回收,作坊每个球获得30元的利润.若作坊所生产的足球可全部售出,请问该作坊选择哪种方案更划算?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图算法框图中含有的基本结构是(  )
A.顺序结构B.条件结构
C.模块结构D.顺序结构和条件结构

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知命题p:?x0∈[0,2],log2(x0+2)<2m;命题q:向量$\overrightarrow a=(1,m)$与向量$\overrightarrow b=(1,-3m)$的夹角为锐角.
(I)若命题q为真命题,求实数m的取值范围;
(II)若(¬p)∧q为真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知命题p:$sinx+\frac{4}{sinx}≥4$,命题q:“a=-1”是“直线x-y+5=0与直线(a-1)x+(a+3)y-2=0平行”的充要条件,则下列命题正确的是(  )
A.p∧qB.p∨(¬q)C.(¬p)∧qD.(¬p)∧(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.等比数列{an}中的a1,a2015是函数$f(x)=\frac{1}{3}{x^3}-4{x^2}+4x-1$的极值点,则log2a1+log2a2+…+log2a2015=2016.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.命题“a>-5,则a>-8”以及它的逆命题、否命题、逆否命题,真命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案