精英家教网 > 高中数学 > 题目详情
16.等比数列{an}中的a1,a2015是函数$f(x)=\frac{1}{3}{x^3}-4{x^2}+4x-1$的极值点,则log2a1+log2a2+…+log2a2015=2016.

分析 求出导函数,利用极值点是导函数定义的方程的根,推出a1a2015,然后利用对数运算法则以及等比数列的性质化简求解即可.

解答 解:函数$f(x)=\frac{1}{3}{x^3}-4{x^2}+4x-1$,可得f′(x)=x2-8x+4,
等比数列{an}中的a1,a2015是函数$f(x)=\frac{1}{3}{x^3}-4{x^2}+4x-1$的极值点,
可得:a1a2015=4.
log2a1+log2a2+…+log2a2015=log2(a1a2…a2015)=log2(a1a20151008=2016.
故答案为:2016.

点评 本题考查函数的导数的应用,函数的极值,以及等比数列的性质,对数运算法则,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.以下五个命题中:
①“若p则q”与“若?q则?p”互为逆否命题.
②am2<bm2是a<b的充要条件.
③“矩形的两条对角线相等”的否命题为假.
④方程2x2-5x+2=0的两根可分别作椭圆和双曲线的离心率.
 ⑤抛物线y=4x2的准线方程为y=-1.
其中真命题的序号为①④(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知向量$\overrightarrow{a}$=(sin($\frac{x}{2}$+$\frac{π}{12}$),cos$\frac{x}{2}$),$\overrightarrow{b}$=(cos($\frac{x}{2}$+$\frac{π}{12}$),-cos$\frac{x}{2}$),x∈[$\frac{π}{2}$,π],设函数f(x)=$\overrightarrow a•\overrightarrow b$.
(1)若cosx=-$\frac{3}{5}$,求函数f(x)的值;
(2)将函数f(x)的图象先向右平移m个单位,再向上平移n个单位,使平移后的图象关于原点对称,若0<m<π,n>0,试求6m+2n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$,过原点的直线与椭圆C交于A,B两点(A,B不是椭圆C的顶点).点D在椭圆C上,且AD⊥AB.设直线BD、AB的斜率分别为k1、k2,若$\frac{k_1}{k_2}=\frac{3}{4}$,则椭圆C的离心率为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.直线mx+(2m-1)y=0和直线3x+my+3=0垂直,则实数m的值为(  )
A.1B.0C.2D.-1或0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.过抛物线x2=4y的焦点F作一直线交抛物线于P,Q两点,若线段PF与FQ的长分别为p,q,则$\frac{1}{p}+\frac{1}{q}$等于(  )
A.$\frac{1}{2}$B.2C.1D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2},x>1}\\{(4-\frac{a}{2})x-1,x≤1}\end{array}\right.$在(-∞,+∞)上单调递增,则实数a的取值范围为(  )
A.[4,8 )B.(4,8]C.(4,8)D.(8,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若x,y满足$\left\{{\begin{array}{l}{x+y≤6}\\{x≥1}\\{y≥3}\end{array}}\right.$,则$\frac{y}{x}$的最大值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)的定义域为(-1,1),则函数f(2x-1)的定义域为(0,1).

查看答案和解析>>

同步练习册答案