精英家教网 > 高中数学 > 题目详情
7.已知平行直线l1:x-2y-2=0,l2:2x-4y+1=0,则l1与l2之间的距离为$\frac{\sqrt{5}}{2}$.

分析 利用平行线间的距离公式计算可得.

解答 解:直线l1:x-2y-2=0即2x-4y-4=0
∴l1与l2间的距离d=$\frac{5}{\sqrt{4+16}}$=$\frac{\sqrt{5}}{2}$.
故答案为:$\frac{\sqrt{5}}{2}$.

点评 本题考查直线的一般式方程和平行关系,涉及平行线间的距离公式,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知数列{an}是递增的等比数列,前n项和为Sn,已知a3=8,S3=14.
(Ⅰ)求数列{an}的通项公式;
(II)若数列{bn},满足anbn=log2an,求{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若复数[x-1+(y+1)i](2+i)=0,(x,y∈R),则x+y=0 

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.关于x的不等式x2+bx+c<0的解集为{x|2<x<4},则bc的值是-48.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.拟用长度为l的钢筋焊接一个如图所示的矩形框架结构(钢筋体积、焊接点均忽略不计),其中G、H分别为框架梁MN、CD的中点,MN∥CD,设框架总面积为S平方米,BN=2CN=2x米.
(1)若S=18平方米,且l不大于27米,试求CN长度的取值范围;
(2)若l=21米,求当CN为多少米时,才能使总面积S最大,并求最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知圆C:x2+y2-4x-2y-20=0,直线l:4x-3y+15=0与圆C相交于A、B两点,D为圆C上异于A,B两点的任一点,则△ABD面积的最大值为27.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\frac{{a{e^x}}}{x}$+x.
(1)若函数f(x)的图象在(1,f(1))处的切线经过点(0,-1),求a的值;
(2)是否存在负整数a,使函数f(x)的极大值为正值?若存在,求出所有负整数a的值;若不存在,请说明理由;
(2)设a>0,求证:函数f(x)既有极大值,又有极小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.《九章算术》之后,人们学会了用等差数列知识来解决问题,《张丘建算经》卷上第22题为:“今有女善织,日益功疾(注:从第2天开始,每天比前一天多织相同量的布),第一天织5尺布,现在一月(按30天计),共织390尺布”,则从第2天起每天比前一天多织$\frac{16}{29}$尺布.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知集合A={x|x2+x-12=0},B={x|mx+1=0},若A∩B={3},则实数m的值为-$\frac{1}{3}$.

查看答案和解析>>

同步练习册答案