【题目】已知圆
内一点
,直线
过点
且与圆
交于
,
两点.
(1)求圆
的圆心坐标和面积;
(2)若直线
的斜率为
,求弦
的长;
(3)若圆上恰有三点到直线
的距离等于
,求直线
的方程.
科目:高中数学 来源: 题型:
【题目】某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点
在正视图上的对应点为
,圆柱表面上的点
在左视图上的对应点为
,则在此圆柱侧面上,从
到
的路径中,最短路径的长度为( )
![]()
A.
B.
C.
D. 2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,BC边上的高所在直线的方程为x-2y+1=0,∠A的平分线所在的直线方程为y=0.若点B的坐标为(1,2),求点A和点C的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆
(
)的右焦点为
,右顶点为
,已知
,其中
为原点,
为椭圆的离心率.
(Ⅰ)求椭圆的方程;
(Ⅱ)设过点
的直线
与椭圆交于点
(
不在
轴上),垂直于
的直线与
交于点
,与
轴交于点
,若
,且
,求直线的
斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥A﹣BCFE中,四边形EFCB为梯形,EF∥BC,且EF=
BC,△ABC是边长为2的正三角形,顶点F在AC上的射影为点G,且FG=
,CF=
,BF=
. ![]()
(1)证明:平面FGB⊥平面ABC;
(2)求二面角E﹣AB﹣F的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市医疗保险实行定点医疗制度,按照“就近就医、方便管理” 的原则,规定参加保险人员可自主选择四家医疗保险定点医院和一家社区医院作为就诊的医疗机构.若甲、乙、丙、丁4名参加保险人员所在地区附近有
三家社区医院,并且他们的选择是等可能的、相互独立的.
(1)求甲、乙两人都选择
社区医院的概率;
(2)求甲、乙两人不选择同一家社区医院的概率;
(3)设在4名参加保险人员中选择
社区医院的人数为
,求
的分布列和数学期望及方差.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
的顶点
,
边上的中线
所在的直线方程为
,
边上的高
所在直线的方程为
.
(
)求
的顶点
、
的坐标.
(
)若圆
经过不同的三点
、
、
,且斜率为
的直线与圆
相切于点
,求圆
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某物流公司进行仓储机器人升级换代期间,第一年有机器人
台,平均每台机器人创收利润
万元.预测以后每年平均每台机器人创收利润都比上一年增加
万元,但该物流公司在用机器人数量每年都比上一年减少
.
(1)设第
年平均每台机器人创收利润为
万元,在用机器人数量为
台,求
,
的表达式;
(2)依上述预测,第几年该物流公司在用机器人创收的利润最多?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左,右焦点分别为
,上顶点为
,
是斜边长为
的等腰直角三角形,若直线
与椭圆
交于不同两点
.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)当
时,求线段
的长度;
(Ⅲ)是否存在
,使得
?若存在,求出
的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com