已知数列{an}满足a1=2,an+1=an-
.
(1)求数列{an}的通项公式;
(2)设bn=nan·2n,求数列{bn}的前n项和Sn
(1) an=
.(2)
Sn=n·2n+1.
【解析】
试题分析:(1)由已知得an+1-an=-
,又a1=2,
∴当n≥2时,an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)=
,
a1=2也符合上式,∴对一切n∈N*,an=
. 6分
(2)由(1)知:bn=nan·2n=(n+1)·2n,
∴Sn=2×2+3×22+4×23+…+(n+1)×2n,①
2Sn=2×22+3×23+…+n×2n+(n+1)×2n+1,②
∴①-②得-Sn=2×2+22+23+…+2n-(n+1)×2n+1=2+
-(n+1)×2n+1
=2+2n+1-2-(n+1)·2n+1=-n·2n+1,∴Sn=n·2n+1. 12分
考点:本题考查了数列的通项公式及前n项和
点评:数列解答题考查的的热点为求数列的通项公式、等差(比)数列的性质及数列的求和问题.因此在复习中,要特别注意加强对由递推公式求通项公式、求有规律的非等差(比)数列的前n项和等的专项训练.
科目:高中数学 来源: 题型:
| 3+4an |
| 12-4an |
| 1 | ||
an-
|
查看答案和解析>>
科目:高中数学 来源: 题型:
| 3 |
| 2 |
| 3nan-1 |
| 2an-1+n-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:
| 5 | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com