精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)讨论的单调性;

(2)若有两个极值点,当时,求的最大值.

【答案】1)当时,上单调递增;当时,上单调递增;在上单调递减;

2

【解析】

1)先对函数求导,分别讨论,即可得出结果;

2)先由(1)得到,对化简整理,再令,得到,根据(1)和求出的范围,再令,用导数的方法求其最大值,即可得出结果.

1)由

因为,所以

因此,当时,上恒成立,所以上单调递增;

时,由,解得;由

所以上单调递增;在上单调递减;

综上,当时,上单调递增;

时,上单调递增;在上单调递减;

2)若有两个极值点

由(1)可得, 是方程的两不等实根,

所以

因此

,则

由(1)可知

时,

所以

上恒成立;

所以上单调递减,

.

的最大值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图是某手机商城2018年华为、苹果、三星三种品牌的手机各季度销量的百分比堆积图(如:第三季度华为销量约占50%,苹果销量约占20%,三星销量约占30%).根据该图,以下结论中一定正确的是(  )

A.华为的全年销量最大B.苹果第二季度的销量大于第三季度的销量

C.华为销量最大的是第四季度D.三星销量最小的是第四季度

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知椭圆的离心率为且右焦点到右准线的距离为.

1)求椭圆的标准方程:

2)过点的直线与椭圆交于两点,与交于点是弦的中点,直线交于点.的面积之比是,求的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=x22acoskπlnxkN*aRa0).

1)讨论函数fx)的单调性;

2)若k2018,关于x的方程fx)=2ax有唯一解,求a的值;

3)当k2019时,证明:对一切x∈(0+∞),都有成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的左、右焦点分别为,圆与双曲线在第一象限内的交点为M,若.则该双曲线的离心率为

A. 2B. 3C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国南北朝时期数学家、天文学家——祖暅,提出了著名的祖暅原理:“幂势既同,则积不容异也”.“幂”是截面积,“势”是几何体的高,意思是两等高几何体,若在每一等高处的两截面面积都相等,则两几何体体积相等.已知某不规则几何体与如图三视图所对应的几何体满足祖暅原理,则该不规则几何体的体积为( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}中,a58a1023

1)令,证明:数列{bn}是等比数列;

2)求数列{nbn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】普通高中国家助学金,用于资助家庭困难的在校高中生.在本地,助学金分一等和二等两类,一等助学金每学期1250元,二等助学金每学期750元,并规定:属于农村建档立卡户的学生评一等助学金.某班有10名获得助学金的贫困学生,其中有3名属于农村建档立卡户,这10名学生中有4名获一等助学金,另6名获二等助学金.现从这10名学生中任选3名参加座谈会.

)若事件A表示“选出的3名同学既有建档立卡户学生,又有非建档立卡户学生”,求A的概率;

)设X为选出的3名同学一学期获助学金的总金额,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解学生课外使用手机的情况,某研究学习小组为研究学校学生一个月使用手机的总时间,收集了500名学生201912月课余使用手机的总时间(单位:小时)的数据.从中随机抽取了50名学生,将数据进行整理,得到如图所示的频率分布直方图.已知这50人中,恰有2名女生的课余使用手机总时间在区间,现在从课余使用手总时间在样本对应的学生中随机抽取2人,则至少抽到1名女生的概率为(

A.B.C.D.

查看答案和解析>>

同步练习册答案