【题目】已知函数.
(1)讨论的单调性;
(2)若有两个极值点,当时,求的最大值.
【答案】(1)当时,在上单调递增;当时,在,上单调递增;在上单调递减;
(2)
【解析】
(1)先对函数求导,分别讨论和,即可得出结果;
(2)先由(1)得到,,对化简整理,再令,得到,根据(1)和求出的范围,再令,用导数的方法求其最大值,即可得出结果.
(1)由得;
因为,所以;
因此,当时,在上恒成立,所以在上单调递增;
当时,由得,解得或;由得;
所以在,上单调递增;在上单调递减;
综上,当时,在上单调递增;
当时,在,上单调递增;在上单调递减;
(2)若有两个极值点,
由(1)可得, 是方程的两不等实根,
所以,,
因此
,
令,则;
由(1)可知,
当时,,
所以,
令,,
则在上恒成立;
所以在上单调递减,
故.
即的最大值为.
科目:高中数学 来源: 题型:
【题目】如图是某手机商城2018年华为、苹果、三星三种品牌的手机各季度销量的百分比堆积图(如:第三季度华为销量约占50%,苹果销量约占20%,三星销量约占30%).根据该图,以下结论中一定正确的是( )
A.华为的全年销量最大B.苹果第二季度的销量大于第三季度的销量
C.华为销量最大的是第四季度D.三星销量最小的是第四季度
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知椭圆的离心率为且右焦点到右准线的距离为.
(1)求椭圆的标准方程:
(2)过点的直线与椭圆交于两点,与交于点是弦的中点,直线与交于点.若与的面积之比是,求的长度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2﹣2acoskπlnx(k∈N*,a∈R且a>0).
(1)讨论函数f(x)的单调性;
(2)若k=2018,关于x的方程f(x)=2ax有唯一解,求a的值;
(3)当k=2019时,证明:对一切x∈(0,+∞),都有成立.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国南北朝时期数学家、天文学家——祖暅,提出了著名的祖暅原理:“幂势既同,则积不容异也”.“幂”是截面积,“势”是几何体的高,意思是两等高几何体,若在每一等高处的两截面面积都相等,则两几何体体积相等.已知某不规则几何体与如图三视图所对应的几何体满足祖暅原理,则该不规则几何体的体积为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】普通高中国家助学金,用于资助家庭困难的在校高中生.在本地,助学金分一等和二等两类,一等助学金每学期1250元,二等助学金每学期750元,并规定:属于农村建档立卡户的学生评一等助学金.某班有10名获得助学金的贫困学生,其中有3名属于农村建档立卡户,这10名学生中有4名获一等助学金,另6名获二等助学金.现从这10名学生中任选3名参加座谈会.
(Ⅰ)若事件A表示“选出的3名同学既有建档立卡户学生,又有非建档立卡户学生”,求A的概率;
(Ⅱ)设X为选出的3名同学一学期获助学金的总金额,求随机变量X的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解学生课外使用手机的情况,某研究学习小组为研究学校学生一个月使用手机的总时间,收集了500名学生2019年12月课余使用手机的总时间(单位:小时)的数据.从中随机抽取了50名学生,将数据进行整理,得到如图所示的频率分布直方图.已知这50人中,恰有2名女生的课余使用手机总时间在区间,现在从课余使用手总时间在样本对应的学生中随机抽取2人,则至少抽到1名女生的概率为( )
A.B.C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com