精英家教网 > 高中数学 > 题目详情
已知椭圆C:的两个焦点为F1(-1,0),F2(1,0),点在椭圆C上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)记O为坐标原点,过F2(1,0)的直线l与椭圆C相交于E,F两点,若△OEF的面积为,求直线l的方程.
【答案】分析:(I)先根据椭圆标准方程,依题意得关于a,b的方程组,进而求得a,b,则椭圆方程可得.
(II)先得出直线l的率存在且不为0,再将直线的方程代入椭圆的方程,消去y得到关于x的一元二次方程,再结合根与系数的关系利用弦长公式即可得△OEF的面积,列出k的方程,即可求得k值,从而解决问题.
解答:解:(Ⅰ)依题意得,解得,a2=4,b2=3…(3分)
∴椭圆C的方程是…(5分)
(Ⅱ):若直线l⊥x轴,则直线l的方程为x=1,易知∴△OEF的面积,所以直线l的率存在且不为0,可设l:y=k(x-1),
得,(3+4k2)x2-8k2x+4k2-12=0,设E(x1,y1),F(x2,y2)∴
…(8分)∴
∵△OEF的面积为,|OF2|=1,∴
解得k=±1,所以直线l的方程为:x±y-1=0…(10分).
点评:本题主要考查了双曲线的方程和双曲线与直线的关系,考查运算求解能力与转化思想.解答的关键是利用方程思想得出弦长,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在直角坐标系xOy中,已知椭圆C:
y2
a2
+
y2
b2
=1(a>b>0)的离心率e=
3
2
,左右两个焦分别为F1、F2.过右焦点F2且与轴垂直的
直线与椭圆C相交M、N两点,且|MN|=1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设椭圆C的左顶点为A,下顶点为B,动点P满足
PA
AB
=m-4,(m∈R)试求点P的轨迹方程,使点B关于该轨迹的对称点落在椭圆C上.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率e=
2
2
,左右两个焦分别为F1,F2.过右焦点F2且与x轴垂直的直线与椭圆C相交M、N两点,且|MN|=2.
(1)求椭圆C的方程;
(2)设椭圆C的一个顶点为B(0,-b),是否存在直线l:y=x+m,使点B关于直线l 的对称点落在椭圆C上,若存在,求出直线l的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直角坐标系xOy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率e=
2
2
,左右两个焦分别为F1,F2.过右焦点F2且与x轴垂直的直线与椭圆C相交M、N两点,且|MN|=2.
(1)求椭圆C的方程;
(2)设椭圆C的一个顶点为B(0,-b),是否存在直线l:y=x+m,使点B关于直线l 的对称点落在椭圆C上,若存在,求出直线l的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省湛江二中高三(上)第一次月考数学试卷(理科)(解析版) 题型:解答题

如图,在直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的离心率e=,左右两个焦分别为F1、F2.过右焦点F2且与轴垂直的
直线与椭圆C相交M、N两点,且|MN|=1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设椭圆C的左顶点为A,下顶点为B,动点P满足=m-4,(m∈R)试求点P的轨迹方程,使点B关于该轨迹的对称点落在椭圆C上.

查看答案和解析>>

科目:高中数学 来源:2010年内蒙古赤峰市高三统考数学试卷(文科)(解析版) 题型:解答题

如图,在直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的离心率e=,左右两个焦分别为F1、F2.过右焦点F2且与轴垂直的
直线与椭圆C相交M、N两点,且|MN|=1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设椭圆C的左顶点为A,下顶点为B,动点P满足=m-4,(m∈R)试求点P的轨迹方程,使点B关于该轨迹的对称点落在椭圆C上.

查看答案和解析>>

同步练习册答案