精英家教网 > 高中数学 > 题目详情
设命题P:不等式(
13
)x+4>m>2x-x2
对一切实数x恒成立;命题q:函数f(x)=-(7-2m)x是R上的减函数.若命题p或q为真命题,命题p且q为假命题,则实数m的取值范围是
 
分析:若p真,则1<m≤4,若q真,则m<3.由题设知p真q假或p假q真.当p真q假时,1<m≤4,且m≥3,由此得3≤m≤4.当p假q真时,m≤1或m>4,且m<3.由此得m≤1.由此能得到实数m的取值范围.
解答:解:若p真,∵2x-x2=-(x-1)2+1≤1,(
1
3
)
x
+4>4

∴1<m≤4,若q真,则7-2m>1,即m<3.
∵命题p或q为真命题,命题p且q为假命题,
∴p真q假或p假q真.
当p真q假时,1<m≤4,且m≥3,∴3≤m≤4.
当p假q真时,m≤1或m>4,且m<3.∴m≤1.
故实数m的取值范围是{m|3≤m≤4或m≤1}.
故答案为:{m|3≤m≤4或m≤1}.
点评:本题考查命题的真假判断,解题时要注意不等式的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设命题p:不等式|2x-1|<x+a的解集是{x|-
13
<x<3}
;命题q:不等式4x≥4ax2+1的解集是∅,若“p或q”为真命题,试求实数a的值取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m∈R,设命题p:不等式|m|≥
a2+8
对任意a∈[-1,1]恒成立;命题q:函数f(x)=x3+mx2+(m+
4
3
)x+6在R上有极值.则使“p或q”为真“p且q”为假的m的取值范围为
(-3,-1)∪[3,4]
(-3,-1)∪[3,4]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m∈R,设命题P:不等式|x|+|x-1|>m的解集是R,命题Q:函数f(x)=log2(x2+2x-m)的定义域是R.如果P或Q为真命题,P且Q为假命题,求m的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

设命题p:“x≠1”是“x3≠x”的充分不必要条件;命题q:
a1
a2
=
b1
b2
=
c1
c2
是不等式a1x2+b1x+c1>0和a2x2+b2x+c2>0同解的充要条件,则以下是真命题的是(  )

查看答案和解析>>

科目:高中数学 来源:2010年高三年级秦皇岛市三区四县联考文科试题 题型:选择题

设命题p:不等式()x+4>m>2xx2对一切实数x恒成立;命题q:函数

f(x)=-(7-2m)xR上的减函数.若命题pq为真命题,命题pq为假命题,则实数m的取值范围是( )

A  (1 ,4]        B.[3 ,4]∪(-∞,1)

C.[3 ,4]∪(-∞,1]       D.(-∞,4]

 

查看答案和解析>>

同步练习册答案