精英家教网 > 高中数学 > 题目详情
已知中心在原点的椭圆的一个焦点为(0,
2
),且过点A(1,
2
)
,过A作倾斜角互补的两条直线,它们与椭圆的另一个交点分别为点B和点C.
(1)求椭圆的标准方程;
(2)求证:直线BC的斜率为定值,并求这个定值.
(3)求三角形ABC的面积最大值.
分析:(1)由题意得c=
2
,再由由椭圆的定义求出a=2,b=
2
,从而得到椭圆的方程.
(2)设AB的斜率为k,则AC的斜率为-k,写出AB的方程与椭圆联立求出B,C坐标得到SC的斜率化简即可
证明直线BC的斜率为定值.
(3)利用弦长公式求出BC 的长,利用得到直线的距离公式求出A到BC的距离,即可求三角形ABC的面积最大值.
解答:解:(1)由题意可知c=
2
,由椭圆的定义求出a=2,所以b=
2
,所以椭圆的方程为:
x2
2
+
y2
4
=1

(2)由题意得设AB的斜率为k,则AC的斜率为-k
所以
y-
2
=k(x-1)
2x2+y2=4
代入得x1+x2=
2k2-2
2
k
2+k2

又∵x1=1∴xB=
k2-2
2
k-2
k2+2

同理xC=
k2+2
2
k-2
k2+2
kBC=
yB-yC
xB-xC
=
kxB-k+
2
+kxC-k-
2
xB-xC
=
2
为定值
(3)设BC方程为y=
2
x+m
y=
2
x+m
x2
2
+
y2
4
=1

4x2+2
2
mx+m2-4=0

|BC|=
3
.
4-
1
2
m2
A到BC的距离为d=
|m|
3

所以S=
1
2
|BC|•d=
1
2
|m|
4-
1
2
m2
=
1
2
m2(4-
1
2
m2)
=
2
4
m2(8-m2)
2

当m2=8-m2时,即m2=4时“=”成立,此时△>0成立.
点评:本题是中档题,考查椭圆方程的求法,直线与椭圆的位置关系,三角形面积求法,最大值的求法,考查计算能力,转化思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知中心在原点的椭圆C的一个焦点F(4,0),长轴端点到较近焦点的距离为1,A(x1,y1),B(x2,y2)(x1≠x2)为椭圆上不同的两点.
(1)求椭圆的方程;
(2)若x1+x2=8,在x轴上是否存在一点D,使|
DA
|=|
DB
|若存在,求出D点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广东)已知中心在原点的椭圆C的右焦点为F(1,0),离心率等于
1
2
,则C的方程是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知中心在原点的椭圆C:
x2
a2
+
y2
b2
=1的焦点为F1(0,3),M(x,4)(x>0)椭圆C上一点,△MOF1的面积为
3
2

(1)求椭圆C的方程.
(2)是否存在平行于OM的直线l,使得直线l与椭圆C相较于A,B两点,且以线段AB为直径的圆恰好经过原点?若存在,求出直线l的方程,请说明理由..

查看答案和解析>>

科目:高中数学 来源: 题型:

已知中心在原点的椭圆C的右焦点为F(
15
,0),直线y=x与椭圆的一个交点的横坐标为2,则椭圆方程为(  )
A、
x2
16
+y2=1
B、x2+
y2
16
=1
C、
x2
20
+
y2
5
=1
D、
x2
5
+
y2
20
=1

查看答案和解析>>

同步练习册答案