精英家教网 > 高中数学 > 题目详情
若P={y|y≥0},Q={x|-
2
≤x≤
2
},则P∩Q=(  )
A、{0,
2
}
B、{(1,1),(-1,-1)}
C、[0,
2
]
D、[-
2
2
]
考点:交集及其运算
专题:集合
分析:由P与Q,求出两集合的交集即可.
解答: 解:∵P=[0,+∞),Q=[-
2
2
],
∴P∩Q=[0,
2
],
故选:C.
点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

化简:
sin(3π+α)cos(π-α)tan(π-α)cos(-α)
sin(5π-α)cos(3π+α)sin(-α)

查看答案和解析>>

科目:高中数学 来源: 题型:

集合A={x|x<0},B={x|y=lg[x(x+1)]},若A-B={x∈A,且x∉B},则A-B=(  )
A、{x|x<-1}
B、{x|-1≤x<0}
C、{x|-1<x<0}
D、{x|x≤-1}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|y=lg(x+1)},B={y=|y=1-ex,x∈R},则A∩B=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

命题“?x0∈N,x02+x0<2”的否定是(  )
A、?x0∈N,x02+x0≥2
B、?x0∉N,x02+x0≥2
C、?x0∈N,x02+x0<2
D、?x0∈N,x02+x0≥2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x+y=-1,且x,y都是负实数,则xy+
1
xy
有(  )
A、最小值2
B、最大值-2
C、最小值
17
4
D、最大值-
17
4

查看答案和解析>>

科目:高中数学 来源: 题型:

定义方程f(x)=f′(x)的实数根x0叫做函数f(x)的“萌点”,如果函数g(x)=x,h(x)=ln(x+1),φ(x)=cosx(x∈(
π
2
,π)的“萌点”分别为a、b、c,则a、b、c的大小关系是
 
(从小到大排列)

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,记角A、B、C所对边的边长分别为a、b、c,设S是△ABC的面积,若2SsinA<(
BA
BC
)sinB,则下列结论中:
①a2<b2+c2;                  ②c2>a2+b2
③cosBcosC>sinBsinC;       ④△ABC是钝角三角形.
其中正确结论的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x+alnx在x=1处的切线l与直线x+2y=0垂直,函数g(x)=f(x)+
1
2
x2-bx.
(Ⅰ)求实数a的值;
(Ⅱ)设x1,x2(x1<x2)是函数g(x)的两个极值点,若b≥
7
2
,求g(x1)-g(x2)的最小值.

查看答案和解析>>

同步练习册答案