精英家教网 > 高中数学 > 题目详情
设函数,其中实数
(1)若,求函数的单调区间;
(2)当函数的图象只有一个公共点且存在最小值时,记的最小值为,求的值域;
(3)若在区间内均为增函数,求实数的取值范围.
(1)详见解析;(2);(3)

试题分析:(1)这是一个三次函数求单调区间的问题,此类问题比较熟悉,三次函数的导数为二次函数,它的零点容易求出,但要注意对零点大小的比较,才能准确写出单调区间;(2)函数的图象只有一个公共点,知方程只有一个根(含重根),结合有最小值,可求出的取值范围,而是一个二次函数,易得它提最小值,最后可求出的值域;(3)由(1)的过程和结果易知的单调增区间,应是其子区间,再由的单调增区间,也应是其子区间,从而确定的取值范围,要注意分类讨论思想的应用.
试题解析:(1)∵,又
∴当时,;当时,
的递增区间为,递减区间为
(2)由题意知
恰有一根(含重根)∴,即
,且存在最小值,所以
,∴,∴的值域为
(3)当时,内是增函数,内是增函数,由题意得,解得
时,内是增函数,内是增函数,由题意得,解得
综上可知,实数的取值范围为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量毫克)与时间(小时)成正比;药物释放完毕后,的函数关系式为为常数),如图所示,根据图中提供的信息,回答下列问题:

(1)求从药物释放开始,每立方米空气中的含药量(毫克)与时间(小时)之间的函数关系式;
(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室.那从药物释放开始,至少需要经过多少小时后,学生才能回到教室?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在股票市场上,投资者常参考股价(每一股的价格)的某条平滑均线的变化情况来决定买入或卖出股票。股民老张在研究股票的走势图时,发现一只股票的均线近期走得很有特点:如果按如图所示的方式建立平面直角坐标系,则股价(元)和时间的关系在段可近似地用解析式来描述,从点走到今天的点,是震荡筑底阶段,而今天出现了明显的筑底结束的标志,且点和点正好关于直线对称。老张预计这只股票未来的走势如图中虚线所示,这里段与段关于直线对称,段是股价延续段的趋势(规律)走到这波上升行

情的最高点。现在老张决定取点,点,点来确定解析式中的常数,并且求得
(Ⅰ)请你帮老张算出,并回答股价什么时候见顶(即求点的横坐标)
(Ⅱ)老张如能在今天以点处的价格买入该股票3000股,到见顶处点的价格全部卖出,不计其它费用,这次操作他能赚多少元?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)求证不论为何实数,总是增函数;
(2)确定的值,使为奇函数;
(3)当为奇函数时,求的值域.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

一企业生产的某产品在不做电视广告的前提下,每天销售量为b吨.经市场调查后得到如下规律:若对产品进行电视广告的宣传,每天的销售量S(吨)与电视广告每天的播放量n(次)的关系可用如图所示的程序框图来体现.

(1)试写出该产品每天的销售量S(吨)关于电视广告每天的播放量n(次)的函数关系式;
(2)要使该产品每天的销售量比不做电视广告时的销售量至少增加90%,则每天电视广告的播放量至少需多少次?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知是定义在上的奇函数,且,若恒成立.
(1)判断上是增函数还是减函数,并证明你的结论;
(2)若对所有恒成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数的定义域为
(1)求
(2)当时,求的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若方程在(-1,1)上有实根,则的取值范围为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数,其中,若对任意的非零实数,存在唯一的非零实数,使得成立,则k的最小值为( )
A.B.5C.6D.8

查看答案和解析>>

同步练习册答案