精英家教网 > 高中数学 > 题目详情
17.已知集合A={x|x2-x-2≤0,x∈R},B={x|-1<x<4,x∈Z},则A∩B=(  )
A.(0,2)B.[0,2]C.{0,2}D.{0,1,2}

分析 求出两个集合,然后求解交集即可.

解答 解:集合A={x|x2-x-2≤0,x∈R}=[-1,2],
B={x|-1<x<4,x∈Z}={0,1,2,3},
∴A∩B={0,1,2},
故选:D.

点评 本题考查集合的交集的求法,基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知在平面直角坐标系中,O是坐标原点,已知椭圆C0:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的焦距为2,离心率为$\frac{{\sqrt{2}}}{2}$.
(1)求椭圆C0的方程;
(2)若M0,N0是椭圆C0上两点,且OM0,ON0的斜率之积与椭圆C0的离心率的平方互为相反数,动点P1满足$\overrightarrow{O{P}_{1}}=a\overrightarrow{O{M}_{0}}+b\overrightarrow{O{N}_{0}}$,求动点P1的轨迹形成的曲线C1方程;
(3)若M1,N1是曲线C1上两点,且OM1,ON1的斜率之积与椭圆C0的离心率的平方互为相反数,动点P2满足$\overrightarrow{O{P}_{2}}=a\overrightarrow{O{M}_{1}}+b\overrightarrow{O{N}_{1}}$,写出动点P2的轨迹形成的曲线C2的方程,以此类推写出动点Pn(n∈N)的轨迹形成的曲线Cn的方程(不要求证明),设直线l:y=kx+1与曲线Cn交于An,Bn两点,对给定的k,若∠AnOBn为钝角,求n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=x2+3x,则f(3)与f($\frac{1}{3}$)的积为8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线过曲线y=x2-4x+1的最低点,则该双曲线的离心率e的值是(  )
A.$\frac{\sqrt{15}}{3}$B.$\frac{\sqrt{13}}{3}$C.$\frac{\sqrt{13}}{2}$D.$\frac{\sqrt{15}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.A,B两地之间隔着一个水塘(如图所示),现选择另一点C,测得CA=182m,CB=126m,∠ACB=60°,求A,B两地之间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若$cos(α+\frac{π}{5})=\frac{4}{5}$,则$sin(2α+\frac{9π}{10})$=$\frac{7}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=Asin(ωx+φ)+m的最小值是0,最大值是4,最小正周期是$\frac{π}{2}$,其图象的一条对称轴是x=$\frac{π}{3}$,则函数f(x)的解析式应为(  )
A.f(x)=Asin(4x+$\frac{π}{6}$)B.f(x)=2sin(2x+$\frac{π}{3}$)+2C.f(x)=sin(4x+$\frac{π}{3}$)+2D.f(x)=2sin(4x+$\frac{π}{6}$)+2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设Sn是等差数列{an}的前n项和,若a1+a2+a8+a9=20,则S9=(  )
A.40B.45C.50D.55

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=3sinωx-$\sqrt{3}$cosωx(ω>0)在区间(-ω,2ω)内单调递增,则ω的最大值为(  )
A.$\frac{\sqrt{π}}{3}$B.$\frac{\sqrt{π}}{2}$C.$\frac{\sqrt{3π}}{3}$D.$\frac{\sqrt{2π}}{2}$

查看答案和解析>>

同步练习册答案