精英家教网 > 高中数学 > 题目详情
已知函数f(x)=(t为常数).
(1)当t=1时,在图中的直角坐标系内作出函数y=f(x)的大致图象,并指出该函数所具备的基本性质中的两个(只需写两个).
(2)设an=f(n)(n∈N*),当t>10,且t∉N*时,试判断数列{an}的单调性并由此写出该数列中最大项和最小项(可用[t]来表示不超过t的最大整数).
(3)利用函数y=f(x)构造一个数列{xn},方法如下:对于给定的定义域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1)(n≥2,n∈N*),…在上述构造过程中,若xi(i∈N*)在定义域中,则构造数列的过程继续下去;若xi不在定义域中,则构造数列的过程停止.若取定义域中的任一值作为x1,都可以用上述方法构造出一个无穷数列{xn},求实数t的值.

【答案】分析:(1)当t=1时,f(x)==-1+,画出函数的图象,利用图象可得函数的性质;
(2)an==-1+,确定1≤n≤[t],n∈N*时,数列单调递增,且此时an均大于-1;n≥[t]+1,n∈N*时,数列单调递增,且此时an均小于-1,由此可得结论
(3)函数f(x)==t在R中无实数解,亦即当x≠t时,方程(1+t)x=t2+t-1无实数解,从而可得实数t的值.
解答:解:(1)当t=1时,f(x)==-1+
图象如图:(2分)
基本性质:(每个2分)
奇偶性:既非奇函数又非偶函数;
单调性:在(-∞,1)和(1,+∞)上分别递增;
零点:x=0;
最值:无最大、小值.(6分)
(2)an==-1+
当1≤n≤[t],n∈N*时,数列单调递增,且此时an均大于-1,
当n≥[t]+1,n∈N*时,数列单调递增,且此时an均小于-1,(8分)
因此,数列中的最大项为a[t}=,(10分)
最小项为a[t}+1=.(12分)
(3)由题意,函数f(x)==t在R中无实数解,
亦即当x≠t时,方程(1+t)x=t2+t-1无实数解.(14分)
由于x=t不是方程(1+t)x=t2+t-1的解,(16分)
因此对任意x∈R,使方程(1+t)x=t2+t-1无实数解,则t=-1为所求.(18分)
点评:本题考查函数的图象与性质,考查函数的单调性,考查数列与函数的关系,考查方程解的研究,确定函数的单调性是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案