精英家教网 > 高中数学 > 题目详情

(1+2x)5的展开式中,x2的系数等于________.

 

40

【解析】(1+2x)5的展开式的通项为

Tr+1=C5r(2x)r=2rC5r·xr,

令r=2,得22×C52=4×10=40.

 

练习册系列答案
相关习题

科目:高中数学 来源:2015届辽宁省大连市五校高二下学期期末考试文科数学试卷(解析版) 题型:选择题

已知是定义在R上的奇函数,当(m为常数),则的值为( ).

A. B.6 C.4 D.

 

查看答案和解析>>

科目:高中数学 来源:2015届贵州省高二下学期期中文科数学试卷(解析版) 题型:填空题

已知x与y之间的一组数据如下,则y与x的线性回归方程为y=bx+a,必过点 .

x

1

1

2

4

y

1

4

5

6

 

 

查看答案和解析>>

科目:高中数学 来源:2015届苏教版选修2-3高二数学双基达标模块练习卷(解析版) 题型:解答题

为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:

     性别

是否需要志愿者     

需要

40

30

不需要

160

270

(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;

(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?

(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由.

附:

P(K2≥x0)

0.050

0.010

0.001

x0

3.841

6.635

10.828

 

χ2=

 

查看答案和解析>>

科目:高中数学 来源:2015届苏教版选修2-3高二数学双基达标模块练习卷(解析版) 题型:填空题

随机抽取9个同学中,至少有2个同学在同一月出生的概率是________(默认每月天数相同,结果精确到0.001).

 

查看答案和解析>>

科目:高中数学 来源:2015届苏教版选修2-3高二数学双基达标3章练习卷(解析版) 题型:解答题

某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在[29.94,30.06)的零件为优质品.从两个分厂生产的零件中各抽出了500件,量其内径尺寸,得结果如下表:

甲厂:

分组

[29.86,29.90)

[29.90,29.94)

[29.94,29.98)

[29.9830.02),

[30.02,30.06)

[30.06,30.10)

[30.10,30.14)

频数

12

63

86

182

92

61

4

乙厂:

分组

[29.86,29.90)

[29.90,29.94)

[29.94,29.98)

[29.9830.02),

[30.02,30.06)

[30.06,30.10)

[30.10,30.14)

频数

29

71

85

159

76

62

18

 

(1)试分别估计两个分厂生产的零件的优质品率;

(2)由以上统计数据填下面2×2列联表,并问是否有99%的把握认为“两个分厂生产的零件的质量有差异”?

 

甲厂

乙厂

合计

优质品

 

 

 

非优质品

 

 

 

合 计

 

 

 

附:

P(χ2≥x0)

0.05

0.01

x0

3.841

6.635

 

 

查看答案和解析>>

科目:高中数学 来源:2015届苏教版选修2-3高二数学双基达标3章练习卷(解析版) 题型:填空题

某单位为了解用电量y度与气温x℃之间的关系,随机统计了某4天的用电量与当天气温.

气温(℃)

14

12

8

6

用电量(度)

22

26

34

38

由表中数据得线性回归方程x+=-2,据此预测当气温为5 ℃时,用电量的度数约为________.

 

查看答案和解析>>

科目:高中数学 来源:2015届苏教版选修2-3高二数学双基达标3.2练习卷(解析版) 题型:填空题

某小卖部为了了解冰糕销售量y(箱)与气温x(℃)之间的关系,随机统计了某4天卖出的冰糕的箱数与当天气温,并制作了对照表(如下表所示),且由表中数据算得线性回归方程x+中的=2,则预测当气温为25 ℃时,冰糕销量为________箱.

气温/℃

18

13

10

-1

冰糕/箱

64

38

34

24

 

查看答案和解析>>

科目:高中数学 来源:2015届苏教版选修2-3高二数学双基达标2.5练习卷(解析版) 题型:解答题

A、B两个投资项目的利润率分别为随机变量X1和X2,根据市场分析,X1和X2的分布列分别为

X1

5%

10%

P

0.8

0.2

 

X2

2%

8%

12%

P

0.2

0.5

0.3

(1)在A,B两个项目上各投资100万元,Y1和Y2分别表示投资项目A和B所获得的利润,求方差V(Y1)、V(Y2);

(2)将x(0≤x≤100)万元投资A项目,100-x万元投资B项目,f(x)表示投资A项目所得利润的方差与投资B项目所得利润的方差的和.求f(x)的最小值,并指出x为何值时,f(x)取到最小值.

 

查看答案和解析>>

同步练习册答案