精英家教网 > 高中数学 > 题目详情
已知:函数f(x)=ax+
b
x
+c
(a,b,c是常数)是奇函数,且满足f(1)=
5
2
,f(2)=
17
4

(1)求a,b,c的值;
(2)试判断函数f(x)在区间(0,
1
2
)上的单调性并说明理由;
(3)试求函数f(x)在区间(0,+∞)上的最小值.
分析:(1)根据函数f(x)=ax+
b
x
+c
是奇函数,得到c=0,再由题中的2个等式建立关于a、b的方程组,解之即可得到a、b的值;
(2)区间(0,
1
2
)上任取两个自变量x1、x2,将对应的函数值作差、变形到因式积的形式,判断符号,根据据单调性的定义可得f(x)=2x+
1
2x
在区间(0,
1
2
)上是减函数.
(3)根据(2)的结论,判断函数的单调性可得f(x)在区间(0,
1
2
)上是减函数,在区间(0,+∞)上是增函数,因此可得函数f(x)在区间(0,+∞)上的最小值为f(
1
2
)=2.
解答:解:(1)∵函数f(x)=ax+
b
x
+c
是奇函数,满足f(-x)=-f(x),∴c=0
f(1)=
5
2
f(2)=
17
4
,∴
a+b=
5
2
2a+
b
2
=
17
4
,解之得a=2,b=
1
2

(2)由(1)可得f(x)=2x+
1
2x

∴f(x)=2x+
1
2x
在区间(0,0.5)上是单调递减的
证明:设任意的两个实数0<x1<x2
1
2

∵f(x1)-f(x2)=2(x1-x2)+
1
2x1
-
1
2x2
=2(x1-x2)+
x2-x1
2x1x2

=
(x2-x1)(1-4x1x2)
2x1x2

又∵0<x1<x2
1
2

∴x1-x2<0,0<x1x2
1
4
,1-4x1x2>0,可得f(x1)-f(x2)>0
即对任意0<x1<x2
1
2
,均有f(x1)>f(x2
∴f(x)=2x+
1
2x
在区间(0,
1
2
)上是减函数.
(3)由(2)得f(x)=2x+
1
2x
在区间(0,0.5)上是单调递减函数.
类似地可证出对任意x1>x2
1
2
,均有f(x1)>f(x2),
可得f(x)=2x+
1
2x
在区间(
1
2
,+∞)上是增函数.
因此,函数f(x)在区间(0,+∞)上的最小值为f(
1
2
)=2.
点评:本题给出含有字母参数的基本初等函数,在已知函数的奇偶性情况下求参数的值,并讨论函数的单调性.着重考查了函数的简单性质和函数最值求法等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知x0函数f(x)=(
1
3
)x-log2x
的零点,若0<x1<x0,则f(x1)的值为(  )
A、恒为负值B、等于0
C、恒为正值D、不大于0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:函数f(x)=
x2+4x

(1)求:函数f(x)的定义域;
(2)判断函数f(x)的奇偶性并说明理由;
(3)判断函数f(x)在(-∞,-2)上的单调性,并用定义加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知幂函数f(x)=x-m2+2m+3(m∈Z)为偶函数,且在区间(0,+∞)上是单调增函数,则m=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

.已知幂函数f(x)=xk2-2k-3(k∈N*)的图象关于y轴对称,且在区间(0,+∞)上是减函数,
(1)求函数f(x)的解析式;
(2)若a>k,比较(lna)0.7与(lna)0.6的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(x)=
-x2+2x   (x>0)
0
                (x=0)
x2+mx
     (x<0)
,则m=(  )

查看答案和解析>>

同步练习册答案