精英家教网 > 高中数学 > 题目详情
(2009•淄博一模)f(x)是定义在R上的奇函数,且当x≥0时f(x)=x2,若对任意的x∈[-2-
2
,2+
2
]
不等式f(x+t)≤2f(x)恒成立,则实数t的取值范围是(  )
分析:先确定函数的单调性,再化抽象不等式为具体不等式,从而可得实数t的取值范围.
解答:解:∵f(x)是定义在R上的奇函数,且当x≥0 时,f(x)=x2
∴当x<0,有-x>0,f(-x)=(-x)2
∴-f(x)=x2,即f(x)=-x2
∴f(x)=
x2,(x≥0)
-x2,(x<0)

∴对任意的x∈[-2-
2
,2+
2
]
,函数为增函数
∵2f(x)=2x2=(
2
x)2=f(
2
x)
∴不等式f(x+t)≤2f(x)等价于不等式f(x+t)≤f(
2
x)
-2-
2
≤x+t≤2+
2
-2-
2
2
x≤2+
2
x+t≤
2
x

-2-
2
-x≤t≤2+
2
-x
-
2
-1≤x≤
2
+1
t≤(
2
-1)x

∴t≤-
2

故选B.
点评:本题考查函数单调性的应用,考查利用单调性处理不等式恒成立问题.将不等式化为(x+t)≤f(
2
x)是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•淄博一模)已知命题p:?x∈R,cosx≤1,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•淄博一模)若不等式组
x-y+5≥0
y≥a
0≤x≤3
表示的平面区域是一个三角形,则a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•淄博一模)如图,已知四棱锥P-ABCD的底面为直角梯形,AD∥BC,∠BCD=90°,PA=PB,PC=PD
(1)证明平面PAB⊥平面ABCD;
(2)如果AD=1,BC=3,CD=4,且侧面PCD的面积为8,求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•淄博一模)已知m,n是不同的直线,α与β是不重合的平面,给出下列命题:
①若m∥α,则m平行与平面α内的无数条直线
②若α∥β,m?α,n?β,则m∥n
③若m⊥α,n⊥β,m∥n,则α∥β
④若α∥β,m?α,则m∥β
上面命题中,真命题的序号是
①③④
①③④
(写出所有真命题的序号)

查看答案和解析>>

同步练习册答案