精英家教网 > 高中数学 > 题目详情

、已知圆O:x2+y2=13

(1)证明:点A(-1,5)在圆O外。

(2)如图所示,经过圆O上任P一点作y轴的垂线,垂足为Q,求线段PQ的中点M的轨迹方程。(12分)

 

【答案】

 

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆O:x2+y2=1,点O为坐标原点,一条直线l:y=kx+b(b>0)与圆O相切并与椭圆
x2
2
+y2=1
交于不同的两点A、B.
(Ⅰ)设b=f(k),求f(k)的表达式,并注明k的取值范围;
(Ⅱ)若
OA
OB
=
2
3
,求直线l的方程;
(Ⅲ)若
OA
OB
=m(
2
3
≤m≤
3
4
),求△OAB面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,已知圆O:x2+y2=1,直线l:y=kx+b(k>0,b>0)是圆的一条切线,且l与椭圆
x2
2
+y2=1
交于不同的两点A,B.
(1)若弦AB的长为
4
3
,求直线l的方程;
(2)当直线l满足条件(1)时,求
OA
OB
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆O:x2+y2=r12(r1>0)与圆C:(x-a)2+(y-b)2=r22(r2>0)内切,且两圆的圆心关于直线l:x-y+
2
=0对称.直线l与圆O相交于A、B两点,点M在圆O上,且满足
OM
=
OA
+
OB

(1)求圆O的半径r1及圆C的圆心坐标;
(2)求直线l被圆C截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆O:x2+y2=1,圆C:(x-4)2+y2=4,P(m,n)(m•n≠0)是圆O和圆C外一点.
(1)过点P作圆O的两切线PA、PB,如图①,试用m,n表示直线AB的斜率;
(2)过点P分别向圆O,圆C引两条切线PA,PB和PM,PN,其中A,B,M,N为切点如图②,试在直线x+y-4=0上求一点P,使AB⊥MN.

查看答案和解析>>

科目:高中数学 来源: 题型:

.已知圆O:x2+y2=b2与直线l:y=
3
(x-2)
相切.
(1)求以圆O与y轴的交点为顶点,直线在x轴上的截距为半长轴长的椭圆C方程;
(2)已知点A(1,
3
2
)
,若直线与椭圆C有两个不同的交点E,F,且直线AE的斜率与直线AF的斜率互为相反数;问直线的斜率是否为定值?若是求出这个定值;若不是,请说明理由.

查看答案和解析>>

同步练习册答案