精英家教网 > 高中数学 > 题目详情
在△ABC中,BC=24,AC,AB的两条中线之和为39,求△ABC的重心轨迹方程.
分析:先以以BC边中点为原点,BC边所在直线为x轴建立直角坐标系,再据:“AB和AC上中线的和为39”得出G点轨迹以B、C为其两焦点的椭圆,最后依据椭圆的标准方程写出顶点A的轨迹方程即可.
解答:解:以BC所在直线为x轴,BC边中点为原点,建立直角坐标系,
则B(12,0),C(-12,0),
D为AC的中点,E为AB的中点,△ABC的重心为G,
由题意可知:|BD|+|CE|=39,
可知|GB|+|GC|=
2
3
(|BD|+|CE|)=26
∴G点轨迹是椭圆,B、C为其两焦点G点轨迹方程为
x2
169
+
y2
25
=1
,去掉(13,0)、(-13,0)两点,
所求△ABC的重心轨迹方程为:
x2
169
+
y2
25
=1
(y≠0)
点评:轨迹方程的求解利用了直译法,对应的轨迹则需对照椭圆的定义.解题时,一要注意正确建立坐标系;二应注意轨迹的纯粹性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,|BC|=2|AB|,∠ABC=120°,则以A,B为焦点且过点C的双曲线的离心率为(  )
A、
7
+2
3
B、
6
+2
2
C、
7
-2
D、
3
+2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,(
BC
+
BA
)•
AC
=|
AC
|2
BA
BC
=3
|
BC
|=2
,则△ABC的面积是(  )
A、
3
2
B、
2
2
C、
1
2
D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,BC=1,∠B=2∠A,则
AC
cosA
的值等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,BC=6,BC边上的高为2,则
AB
AC
的最小值为
-5
-5

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•石景山区二模)在△ABC中,BC=2,AC=
7
B=
π
3
,则AB=
3
3
;△ABC的面积是
3
3
2
3
3
2

查看答案和解析>>

同步练习册答案