精英家教网 > 高中数学 > 题目详情

函数f(x)=sin(ωx-数学公式)(ω>0)的最小正周期为π,则f(x)的一个单调递增区间为


  1. A.
    [-数学公式数学公式]
  2. B.
    [数学公式数学公式]
  3. C.
    [-数学公式数学公式]
  4. D.
    [-数学公式数学公式]
C
分析:由周期可得ω=2,进而可得函数的解析式,由整体法可写出函数所有的增区间,然后代整数k的值验证即可.
解答:由题意可得,解得ω=2,故函数的解析式可化为:f(x)=sin(2x-
≤2x-,k∈Z,解得,k∈Z
当k=0时,可得单调递增区间为:[],而其它答案均不合适.
故选C
点评:本题为三角函数增区间的求解,利用整体的思想是解决问题的关键,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知角a的顶点在原点,始边与x轴的正半轴重合,终边经过点P(-3,
3
).
(1)定义行列式
.
ab
cd
.
=a•d-b•c,解关于x的方程:
.
cosxsinx
sinacosa
.
+1=0;
(2)若函数f(x)=sin(x+a)+cos(x+a)(x∈R)的图象关于直线x=x0对称,求tanx0的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin(2x+φ)(-π<φ<0),y=f(x)的图象过点(
π8
,-1).
(1)求φ;  
(2)求函数y=f(x)的周期和单调增区间;
(3)在给定的坐标系上画出函数y=f(x)在区间,[0,π]上的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=sin(ωx+?)(x∈R,ω>0,0≤?<2π)的部分图象如图,则
(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(wx+
π
2
)(w>0),其图象上相邻的两个最低点间的距离为2π.
(1)求ω的值及f(x)
(2)若a∈(-
π
3
π
2
),f(a+
π
3
)=
1
3
,求sin(2a+
3
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•红桥区一模)函数f(x)=sin(2ωx+
π
6
)+1(x∈R)图象的两相邻对称轴间的距离为1,则正数ω的值等于(  )

查看答案和解析>>

同步练习册答案