精英家教网 > 高中数学 > 题目详情

设定义域为的函数为实数)。
(1)若是奇函数,求的值;  
(2)当是奇函数时,证明对任何实数都有成立.

(1),(2)证明过程详见解析.

解析试题分析:本题考查函数的奇偶性和函数最值.考查学生的计算能力和综合分析问题和解决问题的能力.第一问,利用函数的奇函数的性质,列出表达式,化简整理得出关于的恒等式,得出的值;第二问,证明恒成立问题,经过分析题意,只需证明,所以只需求出是通过配方法求出的,是通过分离常数法求出的.
试题解析:(1)(法一)因为是奇函数,所以
,∴,∴
,∴,∴.(6分)
(法二)因为是奇函数,所以,即对任意实数成立.化简整理得,这是关于的恒等式,所以,所以 (舍)或.
所以.(6分)
(2) ,因为,所以
从而
对任何实数成立,
所以对任何实数都有成立.(12分)
考点:1.函数的奇偶性;2.配方法求函数最值;3.分离常数法求函数最值;4.恒成立问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知偶函数满足:当时,,当时,
(Ⅰ)求表达式;
(Ⅱ)若直线与函数的图像恰有两个公共点,求实数的取值范围;
(Ⅲ)试讨论当实数满足什么条件时,直线的图像恰有个公共点,且这个公共点均匀分布在直线上.(不要求过程)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为立方米,且.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为千元,设该容器的建造费用为千元.

(Ⅰ)写出关于的函数表达式,并求该函数的定义域;
(Ⅱ)求该容器的建造费用最小时的

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)= 是奇函数
(1)求实数m的值
(2)若函数f(x)在区间上单调递增,求实数a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为偶函数.
(Ⅰ) 求的值;
(Ⅱ) 若方程有且只有一个根, 求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,且
(1)求实数的值;
(2)解不等式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的定义域为
(1)求
(2)当时,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知A、B、C是直线上的不同三点,O是外一点,向量满足,记
(1)求函数的解析式;
(2)求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)请写出函数在每段区间上的解析式,并在图中的直角坐标系中作出函数的图象;
(II)若不等式对任意的实数恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案